				Govern	nment Colle	ege of Engi	neering, Kar	ad		
				First Yea	ar M. Tech	in Electrica	l Power Syst	ems		
				P	PS2101: Pov	wer System	Analysis			
Tea	achin	g Schei	ne					Examination Sch	eme	
Lee	ctures		03 Hrs/week					MSE	20	
Tu	torials	5	Hrs/week					ISE	20	
Tot	tal Cre	edits	03					ESE	60	
								Duration of ESE	02 Hrs	30 Min
Co	urse	Outcor	nes (CO)							
Stı	ident	s will t	be able to:							
1.	calc	ulate v	oltage phasors	at all buse	es, given the	e data using	various meth	ods of load flow.		
2.	Ran	k vario	ous contingenc	ies accordi	ing to their s	severity				
3.	Esti	mate tl	ne bus voltage	phasors gi	iven various	s quantities v	viz. power flo	w, voltages, taps,	СВ	
	statı	us etc				-	-			
4.	Esti	mate c	loseness to vol	ltage collar	pse and calc	culate PV cu	rves using co	ntinuation power f	low	
	1				Cou	urse Content	ts			Hours
Ur	nit 1	•	Load flow :	Overview of	of Newton-I	Raphson ,Ga	auss-Siedel			6
		•						chniques, handling	g Qmax	
		•					uency effects le in load flov			
			11,11,11,10,000	, 110 <i>(</i> , 1141)			10 III 10uu 110			
Ur	nit 2	•	Fault Analys			ts				8
		•	open conduc							
Ur	nit 3	•	generalized				tingency ana	lysis, generator shi	ft	8
		_	distribution	•	unity state a	ingrain, con	ungeney unu	generator sin		
		•	line outage d	listribution	n factor, mu	ltiple line ou	utages			
		•	overload ind							
Ur	nit 4	•	Power Syste	-	lents : WAR	RD				6
T.	nit 5	•	REI. equival		C	•				0
U	ш 5	•	State Estima Virtual and I		rces of error	rs in measur	ement			8
			Measuremen		ability					
		•	Tracking sta		•					
		•	WSL metho							
Ur	nit 6	•	Voltage Stat							6
		•	P-V curve, n	•	0 1					
		•	continuation				oad flow			
		•	voltage colla	-	-	-				

Tex	t Books											
1.	J.J. Grainger &W.D.Stevenson, "Power system analysis", M	cGraw Hill	,2003									
2.	L.P. Singh, "Advanced Power System Analysis and Dynami	cs", New A	Age International, 2006									
Ref	erence Books											
1.	A. R. Bergen & Vijay Vittal, "Power System Analysis", Pea	rson , 2000										
2.	G.L. Kusic, "Computer aided power system analysis", Prentice Hall India, 1986											
3.	A.J. Wood, "Power generation, operation and control", Johr	n Wiley, 19	94									
4.	P.M. Anderson, "Faulted power system analysis", IEEE Pres	ss, 1995										
Use	ful Links											
1.	https://onlinecourses.nptel.ac.in/noc19_ee62/preview											
2	https://nptel.ac.in/courses/108/105/108105172/											
3	https://www.coursera.org/learn/power-system-analysis											

$PO \rightarrow$	PO	PSO	PSO	PSO											
CO↓	1	2	3	4	5	6	6	8	9	10	11	12	1	2	3
CO 1	2	2		1	3							1	3		
CO 2	1	3	1	1	2	1							3		
CO 3	2	2	1	1	1		1					1	2		
CO 4	2	3	1	2	1							1	3		

		First Year M. Tech in	Electrical Power Systems									
			System Dynamics									
Taga	hing Soho		Examination Schem	0								
reac	hing Sche	me	Examination Schem	e								
Lect	ures	03 Hrs/week	MSE 2	0								
Futo	rials	Hrs/week	ISE 2	20								
Fotal	l Credits	03	ESE 6	0								
			Duration of ESE 0	2 Hrs 30 Mii								
Cou	rse Outco	mes (CO)										
Stud	ents will b	e able to:										
1.]	Demonstr	ate the modelling of synchronous machi	ne in details system									
2. (Construct	models for induction motors and assess	their dynamic behavior									
2. (construct	models for modelion motors and assess	then dynamic benavior									
3.]	Derive an	d interpret flux-linkage equations for sy	nchronous machines									
1 .	Analyse the behaviour of synchronous machines under different operating conditions using per unit											
	system co	-										
		Course	e Contents	Hou								
Unit	t1 •	Synchronous Machines: Per unit systems		8								
	•	Park's Transformation (modified)										
	•	Flux-linkage equations.										
Unit	t 2 •	Voltage and current equations		8								
	•	Formulation of State-space equations										
	•	Equivalent circuit.										
Unit	t 3 •	Sub-transient and transient inductance	e and Time constants, Simplified models of	6								
Unit	t 4 •	synchronous machines Small signal model: Introduction to fi	requency model	4								
		Sinan signa model. Introduction to h	induction induction									
	t 5 •	Excitation systems and Philips-Heffree PSS Load modeling.	on model	8								
Unit	t 6	Modeling of Induction Motors		6								
		Prime mover controllers.										
	•	Time mover controllers.										
Unit	Books	Time mover controners.										
Unit Text	• Books		Control and Stability", Galgotia , New Delhi	, 1981								
1.	Books P. M. An J Machov	derson & A. A. Fouad "Power System C	Control and Stability", Galgotia , New Delhi System Dynamics and Stability", John Wil									
Unit Text 1. 2.	Books P. M. An	derson & A. A. Fouad "Power System C vski, J Bialek& J. R W. Bumby, "Power										

2.	E.W. Kimbark, "Power system stability", Vol. I & III, John Wiley & Sons, New York 2002												
Use	Useful Links												
1	https://archive.nptel.ac.in/courses/108/102/108102080/												
2	https://www.iitp.ac.in/~siva/2021/ee549/index.html												

$PO \rightarrow$	PO	PSO	PSO	PSO											
CO↓	1	2	3	4	5	6	6	8	9	10	11	12	1	2	3
CO 1	3	3	1	3						2		2	3		
CO 2	3	3	1	3						2		3	3		
CO 3	3	3	2	2	1					2		1	3		
CO 4	3	3	3	3	3					2		3	3		

	Government College	of Engineering, Karad	
	First Year M. Tech in I	Electrical Power Systems	
	PS2133: Non-conven	tional Energy Systems	
Teaching Sch	ieme	Examination Sch	eme
Lectures	03 Hrs/week	MSE	20
Tutorials	Hrs/week	ISE	20
Total Credits	03	ESE	60
		Duration of ESE	02 Hrs 30 Min
Course Outc Students wil			
	diverse energy sources for distributed generat	-	
-	the impact of distributed generation on pow		
	and propose solutions for power quality distur		
4. Formulat	e economic analyses and develop strategies for Course	e Contents	Hours
Unit 1	Introduction, Distributed vs Central Stati	on Generation	6
	• Sources of Energy such as Micro-turbine	rs	
	• Internal Combustion Engines.		
Unit 2	• Introduction to Solar Energy, Wind E		8
	• Hydro Energy, Tidal Energy, Wave E		
Unit 3	 Geothermal Energy, Biomass and Fue Power Electronic Interface with the G 		6
TT •4 4			
Unit 4	Impact of Distributed Generation on tPower Quality Disturbances	the Power System	8
Unit 5	Transmission System Operation		8
	Protection of Distributed Generators		
Unit 6	• Economics of Distributed Generation		6
Text Books	Case Studies		
Text BOOKS			
1. Ranjanl	Rakesh, Kothari D.P, Singal K.C, "Renew	able Energy Sources and Emerging Tech	nologies", 2nd
Ed. Pres	ntice Hall of India ,2011		
	Bollen, Fainan Hassan, "Integration of D IEEE Press	Distributed Generation in the Power Syste	em", July 2011
Reference Bo	ooks		
1. Loi Lei	Lai, Tze Fun Chan, "Distributed Generati	ion: Induction and Permanent Magnet Ge	enerators".
October	2007, Wiley-IEEE Press.		2
2. Roger A	Messenger, Jerry Ventre, "Photovoltaic	System Engineering", 3rd Ed, 2010	

3.	Application", John Wiley and Sons 2nd Ed, 2010												
Use	Useful Links												
1.	https://www.coursera.org/learn/wind-energy												
2	https://online.stanford.edu/courses/xeiet200-planning-sustainable-future-wind-water-and-sun												
3	https://www.futurelearn.com/microcredentials/microgrid-market-and-policy												

$PO \rightarrow$	PO	PSO	PSO	PSO											
CO↓	1	2	3	4	5	6	6	8	9	10	11	12	1	2	3
CO 1	2	2	2	1	1	2	2					2	3		
CO 2	2	2	3	2	1	3	1					1	3		
CO 3	3	2	1	1	3	1	2					2	1		
CO 4	3	2	2	1	2	1	2						1		

		Government Colle	ege of Engineering, Karad								
		First Year M. Tech i	in Electrical Power Systems								
		PS2124	4 : Smart Grid								
Teaching	g Sche	ne	Examination Scheme								
Lectures		03 Hrs/week	MSE 20								
Tutorials		Hrs/week	ISE 20								
Total Cre	dits	03	ESE 60								
			Duration of ESE 02 Hrs	30 Min							
Course (Outcor	nes (CO)	I I								
		be able to:									
		e the difference between smart grid &									
		rt metering concepts to industrial and									
			ations, distributed generation and wide area measure	ments							
4. Sele	ct sma	rt grid solutions using modern comm	nunication technologies irse Contents	II							
		Cou	irse Contents	Hour							
Unit 1	•	Introduction to Smart Grid, Evolution	of Electric Grid	8							
	•	Concept of Smart Grid, Definitions									
	•	Need of Smart Grid, Concept of R	cobust & Self Healing Grid Present development &								
		International policies in Smart Grid									
Unit 2	•		Time Prizing, Smart Appliances, Automatic	8							
		Meter Reading(AMR)	1								
	•	Outage Management System(OMS	b) PHEV), Vehicle to Grid, Smart Sensors, Home &								
	•	Building Automation	HEV), Venicle to Grid, Smalt Sensors, Home &								
	•	Smart Substations, Substation Auto	omation. Feeder Automation								
Unit 3	•	Geographic Information System(G		6							
	•	Intelligent Electronic Devices(IED) & their application for monitoring & protection,								
			Pumped Hydro, Compressed Air Energy Storage,								
		Wide Area Measurement System(V	WAMS)								
TI	•	Phase Measurement Unit(PMU)									
Unit 4	•		blications of micro-grid, formation of micro-grid, on & control of micro-grid. \Box Plastic & Organic	8							
			ariable speed wind generators, fuel-cells, micro-								
		turbines	unable speed while generators, ruer eens, mere								
	•	Captive power plants, Integration of	of renewable energy sources								
Unit 5	•		rid, Power Quality issues of Grid connected	6							
		Renewable Energy Sources									
	•		nart Grid, Web based Power Quality monitoring \Box								
In:46		Power Quality Audit	MT: Home Area Nature 1 (HANT) N. 11 1 14								
Unit 6	•	C I	MI), Home Area Network (HAN), Neighborhood Area	8							
	Network (NAN), Wide Area Network (WAN)										

	 Bluetooth, ZigBee, GPS, Wi-Fi, Wi-Max based comr 	nunication.		
	Wireless Mesh Network, Basics of CLOUD Comput	-	Security for Smart Grid □	
	Broadband over Power line (BPL)	0 1	,	
	• IP based protocols			
Text	Books			
1.	Ali Keyhani, "Design of smart power grid renewable energy syste	ems", Wiley I	IEEE, 2011	
2.	Clark W. Gellings, "The Smart Grid: Enabling Energy Efficiency	and Demand	Response", CRC Press, 200	19
Refe	erence Books			
1.	JanakaEkanayake, Nick Jenkins, KithsiriLiyanage, "Smart Grid:	Technology a	nd Applications", Wiley 201	2
2.	Stuart Borlase, "Smart Grid: Infrastructure, Technology and solution	ons " CRC F	Press	
3.	A.G.Phadke, "Synchronized Phasor Measurement and their Applie	cations", Spri	nger	
Use	rul Links			
1.	https://www.smartgrid.gov/the smart grid/smart grid.html	· · ·		
2	https://www.energy.gov/smart-grid			

$PO \rightarrow$	PO	PSO	PSO	PSO											
CO↓	1	2	3	4	5	6	6	8	9	10	11	12	1	2	3
CO 1	2	2	2	1	1	2	2					2	3		
CO 2	2	2	3	2	1	3	1	2				1	3		
CO 3	3	2	1	1	3	1	2					2	1		
CO 4	3	2	2	1	2	1	3	1					1		

	Government College of Engineering, Karad							
		Fir	rst Year M. Tech in Electrical	Power Syst	ems			
			PS2123: High Power Con	nverter				
Teach	Teaching Scheme Examination Scheme							
Lectu	res	03 Hrs/week			MSE	20		
Tutori	als	Hrs/week			ISE	20		
Total	otal Credits 03 ESE				60			
	Duration of ESE 02 H					02 Hrs	30 Min	
Cours	se Outcor	nes (CO)				1		
		be able to:	CTO I	CDT1-		-1		
			of PSDs such as SCRs, GTOs, l lity to use them properly	GBTs and i	ise them in practic	al syster	ns and	
			of multi-level VSIs, DC-DC sw	itched mode	e converters, cyclo	-convert	ers	
3. D	efend us	e of power condition	oners and their applications					
4. Design power circuit and protection circuit of PSDs and converters								
Course Contents						Hours		
Unit	1 •	Power electronic s	systems				6	
	•	An overview of PS	SDs, multipulse diode rectifier, mu	ltipulse				
	•	SCR rectifier						
Unit	2 •		ansformers, multilevel voltage s	ource inver	ters: two level volt	age	8	
		source inverter,						
	•	cascaded						
T I *4	•	H bridge multile		•. 1.•1	1.			
Unit	5 •	Diode clamped n	nultilevel inverters, flying capa	citor multile	evel inverter		8	
Unit	4 •	PWM current sou					6	
T Inc.ª4	•		h mode converters					
Unit	5	AC voltage contr Power conditione	rollers : Cyclo-converters, matri ers and UPS	x converter	,		8	
Unit	6 •		converters, protection of devices a	nd circuits			6	
Tutor	ials							
Text 1	Books							
		, T. M. Undeland an Sons, 1989	nd W. P. Robbins, "Power Electro	nics: Conve	rter, Applications an	nd Design	n", John	
	-							
2. N	vi.H. Kash	ia, "Power Electroni	ics", Prentice Hall of India, 1994					

Ref	erence Books								
1.	B. K. Bose, "Power Electronics and A.C. Drives", Prentice Hall, 1986								
2.	2. Bin Wu, "High power converters and drives", IEEE press, Wiley Enter science								
Use	ful Links								
1.	https://archive.nptel.ac.in/courses/108/102/108102157/								
2	2 <u>https://www.edx.org/learn/engineering/the-georgia-institute-of-technology-multilevel-converters-for-mediumhigh-power-applica</u>								
3	https://skill-lync.com/electrical-engineering-courses/design-concep	ots-power-el	ectronic-converters-industrie	<u>28</u>					

$PO \rightarrow$	PO	PSO	PSO	PSO											
CO↓	1	2	3	4	5	6	6	8	9	10	11	12	1	2	3
CO 1	2	2	2	1	1	2						2	3		
CO 2	3	2	3	1	2	3						2	3		
CO 3	3	2	2	2	1	2						2	2		
CO 4	2	2	2	1	2	1							2		

		Government College o	f Engineering, Karad						
		First Year M. Tech in E	lectrical Power Systems						
		PS2114 : Electrical Pow	er Distribution System						
Teachi	ng Sche	ne	Examination Scheme						
Lecture	es	03 Hrs/week	MSE 20						
Tutoria	ıls	Hrs/week ISE 20							
Total C	Credits	03	ESE 60						
			Duration of ESE 02 Hrs	s 30 Min					
Course	e Outcor	nes (CO)							
		be able to:							
		ower distribution systems							
		strategies for efficient distribution system							
	-	omplex challenges in distribution network present comprehensive automation solu							
		Course Course	•	Hour					
Unit 1	•	Distribution of Power, Management, Powe	r Loads,	6					
	•	Load Forecasting Short-term & Long-term	,						
	•	Power System Loading, Technological For	ecasting.						
Unit 2	•		nt System (D.M.S.) Distribution Automation:	8					
		 Definition, Restoration / Reconfiguration of Distribution Network, Different Methods and 							
	-	constraints	buton Network, Different Methods and						
	•	Power Factor Correction							
Unit 3	•	Interconnection of Distribution,		6					
	•	Control & Communication Systems,							
	•	Remote Metering,							
T T •4 4	•	Automatic Meter Reading and its imple							
Unit 4	•	SCADA: Introduction, Block Diagram,		8					
	•	SCADA Applied To Distribution Auto Common Functions of SCADA,	mation.						
	•	Advantages of Distribution Automation	through SCADA						
Unit 5			vitches, Capacitors, Optimum Switching vice	8					
	•	Distribution Systems, Sectionalizing Systems	vitches – Types Benefits						
		Bellman's Optimality Principle,	menes Types, Denents,						
	•	Remote Terminal Units,							
	•	Energy efficiency in electrical distribut	ion & Monitoring						
Unit 6	•	Maintenance of Automated Distribution Sy		8					
	•	Difficulties in Implementing Distribution.		1					

	Automation in Actual Practice, Urban/Rural D techniques applied to Distribution Automation	Distribution,	Energy	Management, Al	
Tex	t Books				
1.	A.S. Pabla, "Electric Power Distribution", Tata McGraw Hill Pu	blishing Co.	Ltd., Fo	urth Edition.	1
2.	M.K. Khedkar, G.M. Dhole, "A Text Book of Electrical power Press, New Delhi	Distribution	Automa	ation", University	Science
Ref	erence Books				
1.	Anthony J Panseni, "Electrical Distribution Engineering", CRC I	Press			
2.	James Momoh, "Electric Power Distribution, automation, protect	tion & contro	ol", CRC	Press Course	
Use	ful Links				
1.	https://www.coursera.org/learn/electrical-power-distribution				
2	https://www.udemy.com/course/electrical-power-distribution-cou	<u>rse/</u>			

$PO \rightarrow$	PO	PSO	PSO	PSO											
CO↓	1	2	3	4	5	6	6	8	9	10	11	12	1	2	3
CO 1	2	2	2	1	1	2					1	2	2		
CO 2	3	2	3	1	2	3					1	2	2		
CO 3	3	2	2	2	3	2					1	2	3		
CO 4	2	2	2	1	2	1					1	1	3		

Government College of Engineering, Karad								
			First Year M. Tech in	n Electrical P	ower Syste	ems		
			PS2113: Con	trol of Conv	erters			
Teachin	g Sche	me				Examination Sch	eme	
Lectures	5	03 Hrs/week				MSE	20	
Tutorials	8	Hrs/week				ISE	20	
Total Credits 03 ESE				ESE	60			
	Duration of ESE 02					02 Hrs	30 Min	
Course	Outcor	nes (CO)	L			I		
		be able to:						
			nce of PWM technique	S				
	-	lifferent PWM SI and VSI usir						
			converter for different	PWM techni	nues			
				rse Contents	ques			Hours
Unit 1	•	Modulation	of one inverter phase leg					6
	•		of single phase					Ŭ
	•	VSI and 3 ph						
Unit 2	•	-	vector placement modu	lation strategi	es			8
	•	-	continuous modulation	U				
	•	Modulation	of CSI					
Unit 3	•		ation of converters					6
Unit 4	•	1 0	modulation strategies	1' /				0
Unit 4	•		modulation for multile tion of modulation con					8
Unit 5	•	*	developments in modu		om PWM			8
	•		oltage unbalance	iunon us rund				
Unit 6	•		imum pulse width and de	ead time				8
Text Bo	oks							
1. D.	Grahaı	ne Holmes, Tho	omas A. Lipo, "Pulse wi	dth modulation	of Power (Converter: Principle	s and P	ractice".
		y & Sons, 03-Oc	-			Ĩ		,
2. Bii	n Vew, '	"High Power Co	onverter", Wiley Publicat	ion				
Reference Books								
I. Marian K. Kazimicrczuk, "Pulse width modulated dc-dc power converter", Wiley Publication								<u>I</u>
Useful L	Links							

1.	https://www.coursera.org/learn/converter-control
2	https://onlinecourses.nptel.ac.in/noc22_ee100/preview
3	https://www.my-mooc.com/en/mooc/advanced-converter-control-techniques/

$PO \rightarrow$	PO	PSO	PSO	PSO											
CO↓	1	2	3	4	5	6	6	8	9	10	11	12	1	2	3
CO 1	2	2	1	1	1	2	2					2	2		
CO 2	3	2	2	1	2	3	1					1	2		
CO 3	3	2	3	2	3	1	2					2	3		
CO 4	2	2	2	1	2	1							1		

Government College of Engineering, Karad

First Year M. Tech in Electrical Power Systems

PS2134: Electrical Hybrid Vehicles

	Examination Scheme
eek	MSE
ek	ISE
	ESE
	Duration of ESE

ncepts, principles, analysis and design of hybrid and electric vehicles.
ignificance of hybrid and electric vehicles
be vehicle performance and power sources
ies for energy management in hybrid and electric vehicles
Course Contents
electric vehicles,
tal importance of hybrid and electric vehicles
e-trains on energy supplies
rmance, vehicle power source characterization Transmission characteristics
o describe vehicle performance
rid traction,
us hybrid drive-train topologies
n hybrid drive-train topologies
sis.
rid traction,
us hybrid drive-train topologies
n hybrid drive-train topologies
sis.
ic components used in hybrid and electric vehicles
ntrol of DC Motor drives
ntrol of Introduction Motor drives configuration and control of Permanent Magnet Motor drives Configuration and control of S
ystem efficiency
machine and the internal combustion engine (ICE)
n motor, sizing the power electronics Selecting the energy storage technology
oporting subsystems

management and their strategies used in hybrid and electric vehicle

ent energy management strategies Comparison of different energy management strategies Implementation issues of energy strategies

sign Techniques in Power Electronics Devices", Springer.		
se, "Sliding mode control of switching Power Converters"		
<u>iit-</u> search&utm_term=course%20hybrid%20and%20electric%20vehicle	s&utm_campaign=s	<u>s_iitr_ev_in&gclid=EAIaIQobChMIs5m72MXCg</u>
c-vehicle-design-online-course?&utm_source=search&utm_medium= up_id=136608836337&ad_id=628213287075&utm_target=kwd-	<u>=gc9302765&utm_c</u>	campaign=evd_course-ph-south-ser-lead-pr-

e%20training&placement=&gclid=EAIaIQobChMIs5m72MXCgAMV5SqDAx3tcgf1EAAYAiAAEgLhTPD_BwE

d-vehicle-certification-program/?--

nyads&utm_campaign=LongTail_la.EN_cc.INDIA&utm_content=deal4584&utm_term=_._ag_118445032537_._ad_618853564450_._kw tchtype=&gclid=EAIaIQobChMIs5m72MXCgAMV5SqDAx3tcgf1EAAYBCAAEgJ9OPD_BwE

$PO \rightarrow$	PO	PSO	PSO	PSO											
CO↓	1	2	3	4	5	6	6	8	9	10	11	12	1	2	3
CO 1	2	3	2	1	1	2	1					2	3		
CO 2	1	2	3	1	1	3	1					1	3		
CO 3	3	1	1	2	3	2	2					2	2		
CO 4	2	2	2	1	2	1							1		

		Government	College of Engineering, Karad		
		First Year M.	Tech in Electrical Power Systems		
		OE2	118: Business Analytics		
Т	aching	Scheme	Examination Sche	me	
Le	ectures	03 Hrs/week	MSE	20	
Τι	utorials	Hrs/week	ISE	20	
То	otal Crec	lits 03	ESE	60	
			Duration of ESE	02 Hrs 3	30 Min
С	ourse O	utcomes (CO)			
St		will be able to:			
1	-	role of business analytics within an	-		
2		ze data using statistical and data min lying business processes of an organi	ning techniques and understand relationshi ization.	ips betv	veen the
3	Weigl	n business analytics to formulate and	solve business problems and to support m	nanager	rial decision
4	makir Devel	lg. op, report, and analyze business data	l.		
		Co	urse Contents	I	Hours
τ	J nit 1	Business analytics: Overview of Bu	siness analytics, Scope of Business		9
		analytics, Business Analytics Proce	ss, Relationship of Business competitive advantages of Business		
		Analytics Process and organisation, Analytics.	, competitive advantages of Busiless		
		Statistical Tools: Statistical Notatio			
		Review of probability distribution a estimation methods overview.	and data modelling, sampling and		
τ	J nit 2	Trendiness and Regression Analysi	s: Modelling Relationships and		8
		Trends in Data, simple Linear Regr			
		Business analytics, problem solving	lytics Personnel, Data and models for g, Visualizing and Exploring Data,		
_	1.4.0	Business Analytics Technology.			
	J nit 3	Organization Structures of Business Management Issues, Designing Info			9
		Ensuring Data Quality, Measuring			
		Managing Changes.	nalutice predicativa Modalling		
		Descriptive Analytics, predictive an Predictive analytics analysis, Data I	Mining, Data Mining Methodologies,		
		Prescriptive analytics and its step in	the business analytics Process,		
_	J nit 4	Prescriptive Modelling, nonlinear C			10
	J III 4	Forecasting Techniques: Qualitative Statistical Forecasting Models, Fore			10

		Series, Forecasting Models for Time Series with a Linear Trend,	
		Forecasting Time Series with Seasonality, Regression Forecasting with	
		Casual Variables, Selecting Appropriate Forecasting Models.	
		Monte Carlo Simulation and Risk Analysis: Monte Carle Simulation	
		Using Analytic Solver Platform, New-Product Development Model,	
		Newsvendor Model, Overbooking Model, Cash Budget Model.	
Un	nit 5	Decision Analysis: Formulating Decision Problems, Decision Strategies	8
		with the without Outcome Probabilities, Decision Trees, The Value of	0
		Information, Utility and Decision Making.	
Un	nit 6	Recent Trends in : Embedded and collaborative business intelligence,	4
		Visual data recovery, Data Storytelling and Data journalism.	-
Tex	t Boo	ks	
1.		iness analytics Principles, Concepts, and Applications by Marc J. Schniederjans, Dara	a G.
		niederjans, Christopher M. Starkey, Pearson FT Press.	
Ref	erenc	e Books	
1.	Du	siness Analytics by James Evans, persons Education.	
1.	Du	siness Analytics by James Evans, persons Education.	
Use	ful Li	inks	
1.	http	s://www.edx.org/learn/business-analytics	
2	http	s://www.coursera.org/specializations/business-analytics	
3	http	s://www.coursera.org/specializations/business-	
	-	ytics?utm_source=gg&utm_medium=sem&utm_campaign=B2C_INDIA_google-cybersecur	ity-
		ficates PMax-arte-	<u></u>
	-	within_14D&utm_content=B2C&campaignid=20361657342&adgroupid=&device=c&key	word=&matchtyp
	-	network=x&devicemodel=&adpostion=&creativeid=&hide_mobile_promo&gclid=EAIaIQo	
		zAMVa5pmAh2G2QxvEAMYAyAAEgLI5 D BwE	
	1		

$PO \rightarrow$	PO	PSO	PSO	PSO											
CO↓	1	2	3	4	5	6	6	8	9	10	11	12	1	2	3
CO 1	2	2	2	1	1	2	2					2	2		
CO 2	3	2	3	1	2	3	1					2	2		
CO 3	3	2	2	2	3	2	1					2	3		
CO 4	2	2	2	1	2	1							3		

		Government C	College of Engineering, Karad	
		First Year M. Te	ech in Electrical Power Systems	
		OE21	28: Industrial Safety	
Tea	aching	Scheme	Examination Scheme	2
Lee	ctures	03 Hrs/week	MSE 2)
Tu	torials	Hrs/week	ISE 2)
Tot	tal Crec	lits 03	ESE 6)
			Duration of ESE 0.	2 Hrs 30 Min
Со	ourse O	utcomes (CO)	1	
Stı 1		will be able to: yze the causes, types, and consequences o	f industrial accidents and hazards	
2		nesize strategies for effective maintenance		
3	Eval	uate corrosion prevention methods and we	ar reduction techniques	
4	Desi	gn systematic fault-tracing approaches for	diverse equipment	
		Cour	se Contents	Hours
U	nit 1	-	types, results and control, mechanical a	
		• • • •	eventive steps/procedure, describe salient poin ety, wash rooms, drinking water layouts, lig	
		cleanliness, fire, guarding, pressure ve	essels, etc, Safety color codes. Fire preventi	
		and firefighting, equipment and method	ls.	
U	nit 2	Fundamentals of maintenance engin engineering, Primary and secondary	eering: Definition and aim of maintenanc	e 8
			naintenance, Types and applications of	
		tools used for maintenance, Mainten economy, Service life of equipment.	ance cost & its relation with replacement	
U	nit 3	Wear and Corrosion and their preven	ntion: Wear- types, causes, effects, wear	6
		reduction methods, lubricants-types general sketch, working and applica	and applications, Lubrication methods,	
		• • • •	ication, iv. Gravity lubrication, v. Wick	
			tion, vii. Ring lubrication, Definition,	
		principle and factors affecting the co	prrosion. Types of corrosion, corrosion	
U	nit 4		and importance, decision treeconcept, nee	d 8
		and applications, sequence of fault f draw decision tree for problems in n	inding activities, show as decision tree, nachine tools, hydraulic, pneumatic,	
		automotive, thermal and electrical e	quipment's like, I. Any one machine tool,	
			rnal combustion engine, v. Boiler, vi. machine tools and their general causes.	

	_			
Uni	t 5	Periodic and preventive maintenance: Periodic inspection-c	1	6
		degreasing, cleaning and repairing schemes, overhauling of		
		components, overhauling of electrical motor, common trout	bles and remedies of	
		electric motor, repair complexities and its use, definition, ne	need, steps and	
		advantages of preventive maintenance.	_	
Uni	t 6	Steps/procedure for periodic and preventive maintenance of	of: I. Machine tools,	4
		ii. Pumps, iii. Air compressors, iv. Diesel generating (DG)		
		schedule of preventive maintenance of mechanical and elec		
		advantages of preventive maintenance. Repair cycle concep	1 1	
Text	Bool		pt und importance	
IUAU	DUUI			
1.	Ma	intenance Engineering Handbook, Higgins & Morrow, Da Informat	tion Services.	
2.	Ma	aintenance Engineering, H. P. Garg, S. Chand and Company.		
Refe	rence	e Books		
	5			
1.	Pu	mp-hydraulic Compressors, Audels, Mcgrew Hill Publication.		
2.	Fo	oundation Engineering Handbook, Winterkorn, Hans, Chapman & H	Iall London.	
		,,,,		
Usef	ul Li	inks		
1.	httr	ps://www.udemy.com/course/industrial-safety-		
	pro	cesses/?utm_source=adwords&utm_medium=udemyads&utm_cam	npaign=DSA_Catchall_1	a.EN_cc.INDIA&ut
	m_	content=deal4584&utm_term= . ag_82569850245 ad_53322080	05577 <u>. kw . de c .</u>	dm <u>.pl_tidsa</u>
	_	· · · · · · · · · · · · · · · · · · ·		
	412	250778272li_9302765pd&matchtype=&gclid=EAIaIQob	oChMIjK3WucbCgAMV	f5lmAh2DcQW2E
		YAiAAEgIwcfD_BwE		
2	http	ps://onlinecourses.nptel.ac.in/noc19_me40/preview		

$PO \rightarrow$	PO	PSO	PSO	PSO											
CO↓	1	2	3	4	5	6	6	8	9	10	11	12	1	2	3
CO 1	2	2	2	1	1	2	2					2	3		
CO 2	3	2	3	1	2	3	1					2	3		
CO 3	3	2	2	2	3	2	1					2	3		
CO 4	2	2	2	1	2	1							3		

		Government Colle	ege of Engineering, Karad	
		First Year M. Tech i	in Electrical Power Systems	
		OE2138: O	perations Research	
Teach	ing S	cheme	Examination Scheme	;
Lectur	res	03 Hrs/week	MSE 20	
Tutoria	als	Hrs/week	ISE 20	
Total C	Credit	is 03	ESE 60	
			Duration of 02 H ESE	Irs 30 Min
		tcomes (CO) rill be able to:		
1.		nstruct problems of discreet and continue	ous variables.	
2.		ecute the concept of non-linear programm	ning	
3.		mulate sensitivity analysis		
4.	Mo	del the real world problem and simulate i		
		Course	Contents	Hours
Unit		Simplex Techniques, Sensitivity Analysis,	-	8
Unit	t 2	Formulation of a LPP - Graphical solution theory - dual simplex method - sensitive		8
Unit	t 3	CPM/PERT - Network representation o scheduling by CPM, crashing of project		6
Unit	t 4	Scheduling and sequencing - single serv deterministic inventory models - Probal Geometric Programming.	ver and multiple server models -	8
Unit	t 5	Single variable Optimization, Unconstruction, Nonlinear programming with equality c KKT conditions	1	8
Unit	t 6	Numerical optimization : Non linear pro unrestricted search, Region elimination Section Methods, Interpolation Method	techniques, Fibonacci Method, Golden	
Text B	Books			
1.	H.	A. Taha, Operations Research, An Introducti	on, PHI, 2008	1
2.	H.	M. Wagner, Principles of Operations Researc	ch, PHI, Delhi, 1982.	
Refere	ence l	Books		

1.	J.C. Pant, Introduction to Optimisation: Operations Research, Jain Brothers, Delhi, 2008
2.	Hitler Libermann Operations Research: McGraw Hill Pub. 2009
3.	Pannerselvam, Operations Research: Prentice Hall of India 2010
4.	Harvey M Wagner, Principles of Operations Research: Prentice Hall of India 2010
Useful	Links
1.	https://onlinecourses.nptel.ac.in/noc19_ma29/preview
2	https://www.coursera.org/learn/operations-research-theory
3	https://www.classcentral.com/course/swayam-operations-research-14219

$PO \rightarrow$	PO	PSO	PSO	PSO											
CO↓	1	2	3	4	5	6	6	8	9	10	11	12	1	2	3
CO 1	3	3	2	3	2	2	2	2			1	2	3		
CO 2	3	3	3	3	3	1	3	2			1	2	2		
CO 3	3	2	2	3	1	2	2	1				1	2		
CO 4	3	2	1	2	2	3	1					1			

		Government Coll	lege of Engineering, Karad	
		First Year M. Tech	in Electrical Power Systems	
		OE2148: Cost Manag	gement of Engineering Project	
Teach	ing So	cheme	Examination Scheme	
Lectur	es	03 Hrs/week	MSE 20	
Tutoria	als	Hrs/week	ISE 20	
Total C	Credits	s 03	ESE 60	
			Duration of 02 H ESE	rs 30 Min
	nts wi Anal	comes (CO) ill be able to: lyze cost concepts and their role in decision hesize methodologies for effective project		
3.		uate advanced costing techniques and their		
4.	Desi	gn integrated cost management approaches	•	
		Course	Contents	Hours
Unit	t 1	Introduction and Overview of the Strategie	c Cost Management Process	6
Unit	t 2	cost and Opportunity cost. Objectives	evant cost, Differential cost, Incremental of a Costing System; Inventory operational control; Provision of data for	8
Unit	t 3	Project: meaning, Different types, why various stages of project execution : co execution as conglomeration of technic Engineering activities. Pre project exec Project team : Role of each member. In with significance. Project contracts. Ty	onception to commissioning. Project cal and non technical activities. Detailed cution main clearances and documents mportance Project site : Data required	8
Unit	t 4	Cost Behavior and Profit Planning Mar Marginal Costing and Absorption Cost Volume-Profit Analysis. Various decis	ting; Break-even Analysis, Cost- sion-making problems. Standard Costing ies: Pareto Analysis. Target costing, Life or. Just-in-time approach, Material	6
Unit	t 5	Total Quality Management and Theory Management, Bench Marking; Balance Analysis. Budgetary Control; Flexible	y of constraints. Activity-Based Cost ed Score Card and Value-Chain	4

	based budgets. Measurement of Divisional profitability pricing decisions including transfer pricing.	
Unit		6
Text B	sooks	
1.	Cost Accounting A Managerial Emphasis, Prentice Hall of India, New Delhi	
2.	Charles T. Horngren and George Foster, Advanced Management Accounting	
Refere	ence Books	
1.	Robert S Kaplan Anthony A. Alkinson, Management & Cost Accounting	
2.	Ashish K. Bhattacharya, Principles & Practices of CostAccounting A. H. Whe	eeler publisher
3.	N.D. Vohra, Quantitative Techniques in Management, Tata McGraw Hill Boo	ok Co. Ltd.
Useful	Links	
1.	https://www.coursera.org/learn/scope-time-management-cost	
2	https://www.udemy.com/course/engineering-cost-management-course/	
3	https://online.rice.edu/courses/scope-time-management-cost	

$PO \rightarrow$	PO	PSO	PSO	PSO											
CO↓	1	2	3	4	5	6	6	8	9	10	11	12	1	2	3
CO 1	2	2		1	3	1					1	1	2		
CO 2	1	3	1	1	2	1						2	3		
CO 3	2	2	1	1	1	1						1	2		
CO 4	2	3	1	2	1							1	3		

	Government Colleg	e of Engineerin	ig, Karad								
	First Year M. Tech in	Electrical Pow	er Systems								
	OE2158: Cor	mposite Materi	als								
Teaching S	cheme		Examination	Scheme							
Lectures	03 Hrs/week		MSE	20							
Tutorials	Hrs/week		ISE								
Total Credi	ts 03		ESE	60							
			Duration of ESE	02 H	rs 30 Min						
Students w1.Eva2.Syn3.Ana	 Synthesize manufacturing methods and applications of diverse composite types Analyze mechanical behavior and failure criteria of composite materials 										
4. Des	sign composite material systems based on strem	<u> </u>	ailure criteria		Hours						
TT •4 4											
Unit 1	INTRODUCTION: Definition – Classific materials. Advantages and application of reinforcement and matrix. Effect of reinforce fraction) on overall composite performance.	8									
Unit 2	REINFORCEMENTS: Preparation-layur	TS: Preparation-layup, curing, properties and applications on fibers, Kevlar fibers and Boron fibers. Properties and									
Unit 3	Mechanical Behavior of composites: Rul mixtures. Isostrain and Isostress condition		verse rule of		2						
Unit 4	Manufacturing of Metal Matrix Composite technique, Cladding – Hot isostatic press Manufacturing of Ceramic Matrix Computing of Liquid phase sintering. Manufacturing of Knitting, Braiding, Weaving. Properties a	ing. Properties a osites: Liquid M Carbon – Carbo	nd applications. Tetal Infiltration on composites:		6						
Unit 5											
Unit 6	Strength: Laminar Failure Criteria-streng maximum strain criteria, interacting failu Laminate first play failure-insight strengt truncated maximum strain criterion; stren concentrations.	re criteria, hygro h; Laminate stre	othermal failure ength-ply discou	nt	8						
Text Books	\$										

1.	Material Science and Technology – Vol 13 – Composites by R.W.Cahn – VCH, West Germany.										
2.	Materials Science and Engineering, An introduction. WD Callister, Jr., Adapted by R. Balasubramaniam, John										
	Wiley & Sons, NY, Indian edition, 2007.										
Refere	nce Books										
1.	Hand Book of Composite Materials-ed-Lubin.										
2.	Composite Materials – K.K.Chawla.										
3.	Composite Materials Science and Applications – Deborah D.L. Chung.										
4.	Composite Materials Design and Applications – Danial Gay, Suong V. Hoa, and Stephen W. Tasi										
Useful	Links										
1.	https://www.udemy.com/course/composite-materials/										
2	https://www.classcentral.com/course/swayam-introduction-to-composites-10005										
3	https://engineering.purdue.edu/online/courses/mechanics-composite-materials										
4	https://onlinecourses.nptel.ac.in/noc19_me67/preview										

$PO \rightarrow$	PO	PSO	PSO	PSO											
CO↓	1	2	3	4	5	6	6	8	9	10	11	12	1	2	3
CO 1	2	2	3	1	2	-	-	-	-	-	-	-	-		
CO 2	2	2	3	1	1	-	-	-	-	-	-	-	1		
CO 3	2	1	3	1	2	2	1	-	-	-	-	2	2		
CO 4	2	1	3	1	2	2	-	-	-	-	-	-	3		

		Government Coll	ege of Engineering	g, Karad		
		First Year M. Tech	in Electrical Powe	er Systems		
		OE2168:	Waste of Energy			
Feachi	ing So	cheme		Examination	Scheme	
Lectur	es	03 Hrs/week	MSE 20			
Futoria	als	Hrs/week		ISE	20	
Fotal C	Credit	s 03		ESE	60	
				Duration of ESE	02 Hrs	s 30 Min
Studer 1.	nts w Diff	tcomes (CO) ill be able to: erentiate various waste-to-energy conversio		iel sources		
2.		ify biomass pyrolysis processes, yields, and		• 1		
3.		lyze biomass gasification technologies, ope			S	
4.	Eva	luate the properties and applications of biog	Contents	technologies		Hours
		Course	Contents			nours
Unit	t 1	Introduction to Energy from Waste: Clas Forest residue, Industrial waste - MSW - 0 digestors		8		
Unit	t 2	Biomass Pyrolysis: Pyrolysis – Types, Methods - Yields and application – Ma yields and applications.	8			
Unit	t 3	Biomass Gasification: Gasifiers – Fixed gasifiers – Fluidized bed gasifiers – De Gasifier burner arrangement for therma and electrical power – Equilibrium and operation.		6		
Unit	t 4	Biomass Combustion: Biomass stoves designs, Fixed bed combustors, Types, bed combustors, Design, construction a above biomass combustors.	inclined grate com	bustors, Fluidiz	zed	8
Unit	t 5	Biogas: Properties of biogas (Calorific technology and status - Bio energy syst - Biomass resources and their classifica		4		
Unit		Biomass conversion processes - Therm combustion - biomass gasification - py conversion - anaerobic digestion - Type Alcohol production from biomass - Bio energy conversion - Biomass energy pr	-	4		
	Books			1		

1.	Non Conventional Energy, Desai, Ashok V., Wiley Eastern Ltd., 1990.										
2.	Biogas Technology - A Practical Hand Book - Khandelwal, K. C. and Mahdi, S. S., Vol. I & II, Tata										
	McGraw Hill Publishing Co. Ltd., 1983.										
Refere	nce Books										
1.											
2.	Biomass Conversion and Technology, C. Y. WereKo-Brobby and E. B. Hagan, John Wiley & Sons,										
	1996.										
Useful	Links										
1.	https://onlinecourses.nptel.ac.in/noc20_ch16/preview										
2	https://www.udemy.com/course/the-concept-of-waste/										
3	https://www.classcentral.com/course/swayam-waste-to-energy-conversion-7960										

$PO \rightarrow$	PO	PSO	PSO	PSO											
CO↓	1	2	3	4	5	6	6	8	9	10	11	12	1	2	3
CO 1	2	2	2	2	3	2						1	3		
CO 2	1	3	1	2	3								2		
CO 3	2	2	1	2	2	1	1						3		
CO 4	2	3	1	2	3							1	3		

		First Voor M. Tooh	n Electrical Power Systems									
		First fear M. fech	II Electrical Fower Systems									
		PS2105 : Re	search Methodology									
Teachi	ing S	cheme	Examination S	cheme								
Lectur	es	02 Hrs/week	MSE	20								
Tutoria	als	Hrs/week	ISE	20								
Total C	Credit	s 02	ESE	60								
			Duration of ESE	02 Hrs 30 Min								
Cours	e Out	tcomes (CO)	I									
<u>St</u> uder	<u>nt</u> s w	ill be able to:										
1.	Des	ign research problems										
2.	Ana	lyse research related information										
3.		ow research ethics										
4.	Org	anise New Developments in IPR										
		Course	Contents	Hours								
Unit	:1	Meaning of research problem, Sources of research problem, Criteria Characteristics of a good research problem, Errors in selecting a research problem, Scope and objectives of research problem. Approaches of investigation of solutions for research problem, data collection, analysis, interpretation, Necessary instrumentations										
Unit	2	Effective literature studies approaches, Plagiarism, Research ethics		4								
Unit	: 3	Effective technical writing, how to wri Developing a Research Proposal, Form and assessment by a review committee		ion 6								
Unit	: 4	Nature of Intellectual Property: Patents Process of Patenting and Development patenting, development. International S Intellectual Property. Procedure for gra	technological research, innovation cenario: International cooperation	on								
Unit	5	Patent Rights: Scope of Patent Rights.	Licensing and transfer of	6								
Unit	6:	-	in IPR: Administration of Patent System. New8R; IPR of Biological Systems, Computer Software etc.8									
Text B	ooks											

2.	T. Ramappa, "Intellectual Property Rights Under WTO", S. Chand, 2008										
Refere	nce Books										
1.	Wayne Goddard and Stuart Melville, "Research Methodology: An Introduction"										
2.	Ranjit Kumar, 2nd Edition, "Research Methodology: A Step by Step Guide for beginners"										
3.	Mayall, "Industrial Design", McGraw Hill, 1992.										
4.	Asimov, "Introduction to Design", Prentice Hall, 1962.										
5.	Robert P. Merges, Peter S. Menell, Mark A. Lemley, "Intellectual Property in New Technological Age", 2016.										
6	Halbert, "Resisting Intellectual Property", Taylor & Francis Ltd ,2007.										
Useful	Links										
1.	https://www.coursera.org/learn/research-methods										
2	https://onlinecourses.nptel.ac.in/noc22_ge08/preview										
3	https://alison.com/course/essentials-of-research-methodology										

$PO \rightarrow$	PO	PSO	PSO	PSO											
CO↓	1	2	3	4	5	6	6	8	9	10	11	12	1	2	3
CO 1	3	2	3	2	1	2	2	1				2			
CO 2	3	2	1	2	2	3	1					1			
CO 3	3	1	3	2	2	2	1					1	1		
CO 4	2	3	2	1	2	1		1					2		

Government College of Engineering, Karad

First Year M. Tech in Electrical Power Systems

PS2106: Renewable Energy Laboratory

Tea	aching Sche	me	Examination Sch	eme
Lee	ctures		MSE	
Tu	torials	Hrs/week	ISE	25
Tot	al Credits	02	ESE	25
Pra	octicals	04 Hrs/week	Duration of ESE	03 Hrs
Со	urse Outcor	nes (CO)		1
Stu	dents will	be able to:		
1.			ferent renewable energy sources, such as solar, wind and select th energy requirements and environmental considerations.	e most suitable
2.	Weigh the		lata obtained from renewable energy systems, using statistical me	thods and
3.		d create an inne	ovative and sustainable renewable energy system that addresses a	real-world
		- C	Course Contents	
and	d theoretica		uitable computational platform to provide students hands-on expe g of various renewable energy sources, technologies, and their	rience
Th		ns to develop a e field of renev	nalytical skills, practical knowledge, and the ability to design inner wable energy.	ovative

$PO \rightarrow$	PO	PSO	PSO	PSO											
CO↓	1	2	3	4	5	6	6	8	9	10	11	12	1	2	3
CO 1	2	2		1	3							1	3		
CO 2	1	2	2	1	2	1						1	3		
CO 3	2	2	2	1	1							1	2		

			Government College of Engineering, Karad		
			First Year M. Tech in Electrical Power System	18	
			PS2107: Advance Simulation Laboratory	7	
Tea	aching Sche	me	I	Examination Sch	eme
Lee	ctures		Ν	MSE	
Tu	torials	Hrs/week	I	ISE	50
Tot	al Credits	02	H	ESE	
Pra	octicals	04 Hrs/week	I	Duration of ESE	02 Hrs 30 Min
	urse Outcor idents will b				
1.			ts to evaluate the performance, stability, and beha SIM, ANSYS softwares	viour of electrica	al systems,
2.			ct of parameter variations on system responses an tem optimization.	nd make informe	d
3.	Develop a		ation models that integrate multiple software tools	s, demonstrating	the ability to
			Course Contents		
con ele op	mprehensive ctrical Pow	e understanding er system. The	uitable computational platform to provide student g of various simulation techniques and software to course aims to equip students with the skills to m id solve practical engineering problems using adv	ools in the field o odel, analyze, ar	nd

Mapping of	COs	and	POs
-------------------	-----	-----	-----

$PO \rightarrow$	PO	PSO	PSO	PSO											
G G L	1	2	3	4	5	6	6	8	9	10	11	12	1	2	3
CO↓															
CO 1	2	2		1	3							1	3		
CO 2	1	2	2	1	2	1						1	2		
CO 3	2	2	2		1							1	2		

	Government College of	f Engineering, Karad							
	First Year M. Tech in Ele	ectrical Power Systems							
	PS2201 :Digital Protect	tion of Power System							
Teaching S	cheme	Examination Sch	eme						
Lectures	03 Hrs/week	MSE	20						
Tutorials	Hrs/week	ISE	20						
Total Credit	s 03	ESE	60						
		Duration of ESE	02 Hrs 30 Min						
Course Ou	tcomes (CO)		1						
Students w	ill be able to:								
	gate evolution of digital relays								
2. Justify	importance of Digital Relays								
3. Apply	Mathematical approach towards protection								
4. Develo	p various Protection algorithms								
	Course C	Contents	Hour						
Unit 1	Evolution of digital relays from electromechanical relays								
	Performance and operational characteris	stics of digital protection							
Unit 2	Mathematical background to protection algorithms								
	• Finite difference techniques								
Unit 3	Interpolation formulae		8						
	• Forward, backward and central difference	ce interpolation							
	Numerical differentiation	I							
	• Curve fitting and smoothing								
	• Least squares meth								
Unit 4	Basic elements of digital protection		8						
	• Signal conditioning: transducers, surge	protection, analog filtering, analog							
	multiplexers								
	• Conversion subsystem: the sampling theorem, signal aliasing								
	• Error, sample and hold circuits, multiplexers, analog to digital conversion								
	• Digital filtering concepts,								
	The digital relay as a unit consisting of hardware and software								
	Sinusoidal wave based algorithms								
Unit 5	• Sample and first derivative (Mann and Morrison) algorithm.								
Unit 5	• Sample and first derivative (Mann and M	Morrison) algorithm.							

	• Least Squares based algorithms. Differential equation based algorithms.
	• Digital Differential Protection of Transformers.
	Digital Line Differential Protection.
Tex	t Books
1.	A.G. Phadke and J. S. Thorp, "Computer Relaying for Power Systems", Wiley/Research studies Press, 2009
2.	A.T. Johns and S. K. Salman, "Digital Protection of Power Systems", IEEE Press, 1999
Ref	erence Books
1.	S. R. Bhide, "Digital Power System Protection" PHI
2.	"L. P. Singh, "Digital Protection", John Wiley & Sons Inc
Use	ful Links
1.	https://onlinecourses.nptel.ac.in/noc22_ee46/preview
2	https://archive.nptel.ac.in/courses/117/107/117107148/
3	https://www.classcentral.com/course/swayam-power-system-protection-19974

$PO \rightarrow$	PO	PSO	PSO	PSO											
	1	2	3	4	5	6	6	8	9	10	11	12	1	2	3
CO↓															
CO 1	2	2	2	1	1	2	2					2	3		
CO 2	3	2	3	1	2	3	1					2	3		
CO 3	3	2	2	2	3	2	1					2	3		
<u> </u>		•	•		_										
CO 4	2	2	2	1	2	1							3		

	Government Coll	ege of Engineering, Karad							
	First Year M. Tech	in Electrical Power Systems							
	PS2202 : Real Tin	ne Control of Power System							
Teaching	Scheme	Examination Scheme							
Lectures	03 Hrs/week	MSE 20							
Tutorials	Hrs/week	ISE 20							
Total Cre	dits 03	ESE 60							
		Duration of ESE 02 H	Irs 30 Min						
Course C	Outcomes (CO)								
	will be able to:								
I Apply	analytical methods for modeling and real-time	e monitoring of power system components							
2 Evalua	ate load frequency control strategies and their	application using modern control theory and AI							
B Analy	ze optimal control techniques for economic dis	spatch and power flow optimization							
Design	and implement reactive power control strates	gies in power systems							
	Cou	rse Contents	Hours						
Unit 1	Analytical Methods: Modeling& Identification	on of power system components, Real time data	6						
	processing, Real time monitoring using phas	or measurement.							
Unit 2	Load Frequency Control: Objectives, tie line bias control, flat frequency control, supplementary								
		e area systems, state variable model for single, two, ops (AVR,AGC), Application of modern control							
	theory, Application of Artificial Intelligence,								
Unit 3	Optimal Control: Generation mix, Optimum	economic dispatch, Optimum generation allocation,	8						
	Solution techniques for optimum power flow	v such as gradients, Newton's linear programming,							
	Non linear programming methods such as De								
		g linear programming, hydro solution to hydro ge (Dynamic programming solution to hydro therma	1						
	scheduling), scheduling problems Kirchmaye								
Unit 4	Reactive power control: Need for adjustable	reactive power, excitation control, tap changing	6						
	-	and dynamic shunt compensation, principles of							
	static compensators and applications. Autom								
Unit 5		ion, Least square estimation of AC networks,	6						
	estimation of orthogonal decomposition, application of state estimation to power systems.								
Unit 6	SCADA and DAS: Power system security, contingency analysis, energy control centers, centralized and de-centralized control, SCADA systems, Recent trends on real time operations.								
		ergy audit Reconfiguration of distribution networks							
	under normal conditions for loss minimization	-							

Tex	tt Books								
1.	B.Handschlw, "Real Time Control Of Electric Power System"								
2.	Recent Trends In Electric Energy System—J.Nanda And D.P. Kothari								
Ref	ference Books								
1.	Computer Aided System Analysis And Control—Mahalanabis Kothari Ahason								
2.	Power System Operation And Control—P.S.R.Murthy								
3.	Electric Energy System Theory An Introduction—OlleD.Elgerd								
4.	Reactive Power Control Of Electric Power System-T.J.E.Miller								
Use	eful Links								
1.	https://www.udemy.com/course/electric-power-protectionswitchgear-and-control-masterclass/? =&utm_source=adwords&utm_medium=udemyads&utm_campaign=LongTail_la.EN_cc.INDIA&utm_content=dea l4584&utm_term=ag_118445032537ad_618853564450kwde_cdmplti_dsa- l212271230479li_9302765pd &matchtype=&gclid=EAIaIQobChMIobPTzsjCgAMVi2l9Ch1dzws4EAA YASAAEgLZWvD_BwE								
2	https://onlinecourses.nptel.ac.in/noc23_ee128/preview								
3	https://www.ntnu.edu/studies/courses/ET8105								
Мо	nning of COs and POs								

$PO \rightarrow$	PO	PSO	PSO	PSO											
	1	2	3	4	5	6	6	8	9	10	11	12	1	2	3
CO↓															
CO 1	2	2	2	1	1	2						2	1		
CO 2	2	2	2	1	2	3						2	1		
CO 3	1	2	2	2	1	2						2	3		
CO 4	2	2	2	1	2	1							3		

Government College of Engineering, K	larad
First Year M. Tech in Electrical Power S	ystems
PS2213 : Restructured Power System	18

Teachin	ng Sche	me				Examination Sch	eme	
Lecture	S	03 Hrs/week				MSE	20	
Tutorial	S	Hrs/week				ISE	20	
Total C	redits	03				ESE	60	
						Duration of ESE	02 Hrs	30 Min
Course	Outcor	nes (CO)	I			I		
Studen	ts will l	be able to:						
1. Ide	ntify th	e need of regul	lation and deregulation.					
			Technical and Non-technica	al issues in	Deregulat	ed Power Industry	·	
			es of existing electricity m		0			
4. Cla	ssify d	fferent market	mechanisms and summari		of various	entities in the man	ket. PE	2
			Course (Contents				Hours
Unit 1	•		ls of restructured system					8
	•	Market arch						
		Load elastic	are maximization					
Unit 2			n vertically integrated syste	ms and in	restructure	d markets		8
0	•		management	and m	restructure	d markets		Ū
Unit 3	•	Optimal bide	0					8
	•	Risk assessr	0					U
	•	Hedging	nont					
	•	Transmissio	on pricing					
	•	Tracing of p						
Unit 4	•	Ancillary ser	rvices					8
	•	Standard ma	U					
	•		generation in restructured	markets				
Unit 5	•	Developmen						6
I. I.	•	**	ons in restructured markets					6
Unit 6	•	Working of re	estructured power systems					6
	•	PJM, Recent	trends in Restructuring					
Text Bo	oks							
1. Lo	rrinPhil	ipson, H. Lee W	illis, "Understanding electric	utilities and	d de-regulat	ion", Marcel Dekke	er Pub.,1	998.
2. St	even Sto	oft, "Power syste	em economics: designing mar	rkets for ele	ectricity", Jo	hn Wiley and Sons	, 2002	
Referen	nce Boo	ks						
		hattacharya, Ja cademic Pub.,	ap E. Daadler, Math H.J. E 2001.	Boolen, "O	peration of	Frestructured powe	er syste	ms",
			our, MuwaffaqAlomoush, "	Restructur	ed electric	al power systems:	operati	on,
tra	ding ar		Marcel Dekker.			Γ		1
Useful	Links							

1.	https://archive.nptel.ac.in/courses/108/101/108101005/
2	https://www.amrita.edu/course/restructured-power-system-optimisation/

$PO \rightarrow$	PO	PSO	PSO	PSO											
CO↓	1	2	3	4	5	6	6	8	9	10	11	12	1	2	3
CO 1	3	3	2	3	2	2	2	2				3	3		
CO 2	3	3	3	3	3	1	3	2				3	2		
CO 3	3	2	2	3	1	2	2	1				3	2		
CO 4	3	2	1	2	2	3	1					3			

	GovernmentCollegeofEngineering,Karad									
		FirstYearM. TechinElectricalPowerSystem	15							
		PS2223:DynamicsofElectricalM/Cs								
TeachingScheme ExaminationScheme										
Lectures	03Hrs/week		MSE	20						
Tutorials	Hrs/week		ISE	20						
TotalCredits	03		ESE	60						

	Duration of ESE 02 Hrs	30 Min							
Course	Dutcomes(CO)								
	willbeableto:								
	nulate Performancecharacteristicsofmachine.								
	e dynamicsofmachine.								
	ve and apply complete voltage and torque equations for primitive 4-winding commutator machin								
	uate performance and characteristics of three-phase induction motors using transformed equation rence frames.	ns and							
	CourseContents	Hours							
Unit1	 Jnit1 Stability. Primitive4WindingCommutatorMachine.CommutatorPrimitive Machine. CompleteVoltageEquationofPrimitive4WindingCommutator Machine. 								
Unit2	 TorqueEquation.AnalysisofSimpleDCMachinesusingthePrimitive MachineEquations. TheThreePhaseInductionMotor.TransformedEquations. DifferentReferenceFramesforInductionMotorAnalysisTransfer FunctionFormulation 	10							
Unit3	 ThreePhaseSalientPoleSynchronousMachine. ParksTransformation-SteadyStateAnalysis. 	6							
Unit4	 LargeSignalTransient.SmallOscillationEquationsinStateVariable form DynamicalAnalysisofInterconnectedMachines 								
Unit5	 LargeSignalTransientAnalysisusingTransformedEquations. DCGenerator/DCMotorSystem. 	8							
Unit6	Alternator/SynchronousMotorSystem.	4							

Tex	tBooks							
1.	D.P.Sengupta&J.B.Lynn,"ElectricalMachineDynamics", TheM	acmillanPr	essLtd.1980	<u> </u>				
2.	RKrishnan"ElectricMotorDrives,Modeling,Analysis,andContro	ol",Pearson	Education.,2001					
Ref	erenceBooks							
1.	.P.C.Kraus, "Analysis of Electrical Machines", McGraw Hill Book Company, 1987							
2.	.I.Boldia&S.A.Nasar,,"ElectricalMachineDynamics", TheMacr	nillanPress	Ltd.1992.					
3.	C.V.Jones, "The Unified Theory of Electrical Machines", Butterwo	orth,Londor	n.1967					
Use	fulLinks							
1	https://archive.nptel.ac.in/courses/108/106/108106023/							
2	https://onlinecourses.nptel.ac.in/noc23_ee55/preview							

$PO \rightarrow$	PO	PSO	PSO	PSO											
CO↓	1	2	3	4	5	6	6	8	9	10	11	12	1	2	3
CO 1	3	2	2	1	1	2						2	1		
CO 2	3	2	3	1	2	1						1	1		
CO 3	3	2	1	2	1	2						2	1		
CO 4	2	2	2	1	1	1							1		

			GovernmentCollegeofEngineering,Karad			
			FirstYearM.TechinElectricalPowerSystems			
			PS2233:PowerApparatusDesign			
Teaching	gSchem	ie	ExaminationS	Scheme		
Lectures		03Hrs/week	MSE	MSE 20		
Tutorials	5	Hrs/week	ISE	20		
TotalCre	dits	03	ESE	60		
			Duration of E	SE 02 Hrs	s 30 Min	
Course	Outcom	es(CO)				
2. Analy method	y princi yze fact ods 1ate des	ples of machin tors affecting t	ne design to determine appropriate loadings and dimensions for he efficiency, losses, and heating of electrical machines, and sele ions and calculations for transformers, including losses, efficien	ect suitable	cooling	
· ·		r and rotor wir	ndings, analyze leakage flux, and optimize machine performance	using desig	gn data	
			CourseContents		Hours	
Unit1	•	Realand appr maindimensi Inductionma DesignofTra Generalcons	DesignofMachines-Specificloadings,choiceofmagneticandelectri arentfluxdensities, temperature rise calculation, Separation of ionforDCmachines chinesandsynchronousmachines nsformers- iderations,outputequation,emfperturn,choiceoffluxdensityandcur nensions,leakagereactanceandconductor size, designoftank and c	rrentden	8	
Unit2	•	densities,tem Separationof Inductionma	ings,choiceofmagneticandelectricloadingsRealandapparentflux- peraturerisecalculation EmaindimensionforDCmachines chinesandsynchronousmachines coolingof machines, types ofventilation, continuous entrating		8	
Unit3	•	Generalcons nsity, main d designoftank Calculationo	iderations,outputequation,emfperturn,choiceoffluxdensityandcur limensions, leakage reactance andconductor size, candcoolingtubes flosses,efficiencyandregulation ngduringshortcircuit	rentde	8	
Unit4	•		cificelectricandmagneticloadings,efficiency,powerfactor otsinstatorandrotor		6	

	•	Eliminationofharmonictorques							
Unit5	5.	Designofstatorandrotorwinding, slotleakageflux	6						
	•	Leakagereactance, equivalent resistance of squirrel cagerotor, Magnetizing current, efficien							
		cyfromdesigndata							
Unit6	j •	Typesofalternators, comparison, specific loadings, output co-	6						
	efficient, design of main dimensions								
	•	IntroductiontoComputerAidedElectricalMachineDesignEnergyefficientmachi							
		nes							
TextB	Books								
1. (ClaytonA.l	E, "ThePerformanceandDesignofD.C.Machines", SirI.Pitman&sons, Ltd.							
2. N	M.G.Say,"	ThePerformanceandDesignofA.C.Machines",Pitman							
Refer	enceBook	S							
1. S	SawhneyA	.K, "AcourseinElectricalMachineDesign", DhanpatRai&Sons, 5thEdition							
Usefu	lLinks								
1 1-4	••••••	underner som (torrig/alastrical_decign /							
1 <u>nu</u>	<u>ups://www</u>	v.udemy.com/topic/electrical-design/							
2 htt	tps://www	v.udemy.com/course/electrical-power-equipment/							

$PO \rightarrow$	PO	PSO	PSO	PSO											
CO↓	1	2	3	4	5	6	6	8	9	10	11	12	1	2	3
CO 1	2	2	2	1		2						2	1		
CO 2	2	2	2	1	2							2	1		
CO 3	3	2	2	2	1							1	1		
CO 4	2	2	1	1	2	1							1		

		Government College of	of Engineering, Karad	
		First Year M. Tech in E	lectrical Power Systems	
		PS2214 : Po	ower Quality	
Teachin	ng Scher	ne	Examination Scheme	
Lecture	s	03 Hrs/week	MSE 20	
Tutorial	s	Hrs/week	ISE 20	
Total C	redits	03	ESE 60	
			Duration of ESE 02 H	rs 30 Min
Course	Outcom	nes (CO)		
Studen	ts will t	be able to:		
1 D:4	<u></u>	A hannen is hannen is inder desine der	·····	
loa	ds		vices and effect of harmonicson system equipn	
	velop an nponen	•	eling and analysis of harmonics innetworks an	d
3. De	sign pro	blems of active power factor correction	based on static VAR compensators andits com	trol
	hniques late shu	nt active power filtering techniques for h	armonics.	
		Course	Contents	Hours
Unit 1	•	Introduction-power quality-voltage qua	ality-overview of power	5
	•	Quality phenomena classification of po	ower quality issues.	
	•	Power quality measures and standards		
	•	Flicker factor transient phenomena-oc		
	•	Power acceptability curves-IEEE guid		
Unit 2	•	Standards and recommended practices Harmonics-individual and total harmonics		8
0	•	RMS value of a harmonic waveform		Ũ
	•	Triplex harmonics. Important harmonic	c introducing devices.SMPS	
	•	Three phase power converters-arcing d	-	
	•	Harmonic distortion of fluorescent lam	ps-effect of power system harmonics on	
		power system equipment and loads.		
Unit 3	•	Modeling of networks and components		6
	•	Transmission and distribution systems		
		\mathbf{C}		
	•	Shunt capacitors-transformers.Electric		
	•	Ground systems loads that cause powe	r quality problems.	
Linit A	•	Ground systems loads that cause powe Power quality problems created by drive	r quality problems. ves and its impact on drive	
Unit 4	•	Ground systems loads that cause powe	r quality problems. ves and its impact on drive ompensation.	6

	Control Methods for Single Phase APFC.											
	Three Phase APFC and Control Techniques											
	• PFC based on Bilateral Single Phase and Three Phase Converter											
Uni	• Hamilton-Jacobi-Bellman equation - model reference adaptive systems (MRAS) - Design hypothesis.	8										
Uni	• Introduction to design method based on the use of Liapunov function.	8										
• Design and simulation of variable structure adaptive model following control.												
Tex	t Books											
1.	G.T. Heydt, "Electric power quality", McGraw-Hill Professional, 2007											
2.	Math H. Bollen, "Understanding Power Quality Problems", IEEE Press, 2000											
Ref	erence Books											
1.	J. Arrillaga, "Power System Quality Assessment", John wiley, 2000											
2.	J. Arrillaga, B.C. Smith, N.R. Watson & A. R.Wood ,"Power system Harmonic Analysis", Wiley,	1997										
Use	Useful Links											
1.	1. <u>https://onlinecourses.nptel.ac.in/noc23_ee63/preview</u>											
2	https://www.udemy.com/course/introduction-to-power-quality/											

$PO \rightarrow$	PO	PSO	PSO	PSO											
CO↓	1	2	3	4	5	6	6	8	9	10	11	12	1	2	3
CO 1	2	2	3	1	2	-	-	-	-	-	-	-	-		
CO 2	2	2	3	1	1	-	-	-	-	-	-	-	1		
CO 3	2	1	3	1	2	2	1	-	-	-	-	2	2		
CO 4	2	1	3	1	2	2	-	-	-	-	-	-	3		

		(Government College of Engineering, Karad	
		Fi	irst Year M. Tech in Electrical Power Systems	
		· · · · · · · · · · · · · · · · · · ·	PS2224 : FACTS and custom Power Devices	
Те	aching Scho	eme	Examination Sche	eme
Le	ctures	03Hrs/week	MSE	20
Tu	torials	Hrs/week	ISE	20
То	tal Credits	03	ESE	60
			Duration of ESE	02 Hrs 30 Min
Co	ourse Outco	mes (CO)		
	udents will			
1.	-	-	e fundamental principles of Passive and Active Reactive Power ad Distribution level in Power Systems.	rCompensation
2.			compensation Schemes like Thyristor/GTO Controlled Reactive	e Power
			sed Reactive Power Systems and their controls.	
3.	Develop a	analytical modelling	g skills needed for modelling and analysis of such Static VARS	Systems.
4.	Compare I	EEE power qualityst	tandards	
	·		Course Contents	Hours
U	nit 1	• Reactive power	Course Contents flow control in Power Systems	Hours 8
U	nit 1	1		
U	nit 1	Control of dynamPower flow control	flow control in Power Systems mic power unbalances in Power System trol-Constraints of maximum transmission line loading	8
U	nit 1	 Control of dynamic Power flow control Benefits of FAC 	flow control in Power Systems mic power unbalances in Power System trol-Constraints of maximum transmission line loading CTS Transmission line compensation- Uncompensated line Shu	8
U	nit 1	 Control of dynam Power flow control Benefits of FAC compensation - 	flow control in Power Systems mic power unbalances in Power System trol-Constraints of maximum transmission line loading CTS Transmission line compensation- Uncompensated line Shu Series compensation –Phase angle control.	8
U	nit 1	 Control of dynam Power flow control Benefits of FAC compensation - Reactive power 	flow control in Power Systems mic power unbalances in Power System trol-Constraints of maximum transmission line loading CTS Transmission line compensation- Uncompensated line Shu Series compensation –Phase angle control.	8
	nit 1	 Control of dynam Power flow control Benefits of FAC compensation - Reactive power Reactive compensities 	flow control in Power Systems mic power unbalances in Power System trol-Constraints of maximum transmission line loading CTS Transmission line compensation- Uncompensated line Shu Series compensation –Phase angle control.	8
		 Control of dynam Power flow control Benefits of FAC compensation - Reactive power Reactive compensation Static versus pass 	flow control in Power Systems mic power unbalances in Power System trol-Constraints of maximum transmission line loading CTS Transmission line compensation- Uncompensated line Shu Series compensation –Phase angle control. compensation – Shunt and Series compensation principles – ensation at transmission and distribution level .	8 int 4
		 Control of dynam Power flow control Benefits of FAC compensation - Reactive power Reactive compe Static versus pass STATCOM - Op control 	flow control in Power Systems mic power unbalances in Power System trol-Constraints of maximum transmission line loading CTS Transmission line compensation- Uncompensated line Shu Series compensation –Phase angle control. compensation – Shunt and Series compensation principles – ensation at transmission and distribution level . ssive VAR compensator,Static shunt compensators: SVC and peration and control of TSC, TCR and STATCOM Compensat	8 int 4
U	nit 2	 Control of dynam Power flow control Benefits of FAC compensation - Reactive power Reactive compensation Static versus pass STATCOM - Op control Comparison better 	flow control in Power Systems mic power unbalances in Power System trol-Constraints of maximum transmission line loading CTS Transmission line compensation- Uncompensated line Shu Series compensation –Phase angle control. compensation – Shunt and Series compensation principles – ensation at transmission and distribution level . ssive VAR compensator,Static shunt compensators: SVC and peration and control of TSC, TCR and STATCOM Compensat tween SVC and STATCOM.	tor 4
U	nit 2	 Control of dynam Power flow control Benefits of FAC compensation - Reactive power Reactive compensation Static versus pass STATCOM - Op control Comparison better 	flow control in Power Systems mic power unbalances in Power System trol-Constraints of maximum transmission line loading CTS Transmission line compensation- Uncompensated line Shu Series compensation –Phase angle control. compensation – Shunt and Series compensation principles – ensation at transmission and distribution level . ssive VAR compensator,Static shunt compensators: SVC and peration and control of TSC, TCR and STATCOM Compensat tween SVC and STATCOM. mpensation: TSSC, SSSC -Static voltage and phase angle regula	tor 4
U	nit 2	 Control of dynam Power flow control Benefits of FAC compensation - Reactive power Reactive compensation Static versus pass STATCOM - Opcontrol Comparison better Static series control COMPARISON CONTROL 	flow control in Power Systems mic power unbalances in Power System trol-Constraints of maximum transmission line loading CTS Transmission line compensation- Uncompensated line Shu Series compensation –Phase angle control. compensation – Shunt and Series compensation principles – ensation at transmission and distribution level . ssive VAR compensator,Static shunt compensators: SVC and peration and control of TSC, TCR and STATCOM Compensat tween SVC and STATCOM. mpensation: TSSC, SSSC -Static voltage and phase angle regula	tor 4
U	nit 2	 Control of dynam Power flow control Benefits of FAC compensation - Reactive power Reactive compensation Static versus pass STATCOM - Opcontrol Comparison bettee Static series control Coperation and Control Static series control 	flow control in Power Systems mic power unbalances in Power System trol-Constraints of maximum transmission line loading CTS Transmission line compensation- Uncompensated line Shu Series compensation –Phase angle control. compensation – Shunt and Series compensation principles – ensation at transmission and distribution level . ssive VAR compensator,Static shunt compensators: SVC and peration and control of TSC, TCR and STATCOM Compensat tween SVC and STATCOM. mpensation: TSSC, SSSC -Static voltage and phase angle regula PAR Control –Applications mpensation – GCSC,TSSC, TCSC	tor 4
Uı	nit 2	 Control of dyname Power flow control Benefits of FAC compensation - Reactive power Reactive compe Static versus pase STATCOM - Op control Comparison better Static series con TCVR and TCP Operation and C Static series con Static synchrone 	flow control in Power Systems mic power unbalances in Power System trol-Constraints of maximum transmission line loading CTS Transmission line compensation- Uncompensated line Shu Series compensation –Phase angle control. compensation – Shunt and Series compensation principles – ensation at transmission and distribution level . ssive VAR compensator,Static shunt compensators: SVC and peration and control of TSC, TCR and STATCOM Compensat tween SVC and STATCOM. mpensation: TSSC, SSSC -Static voltage and phase angle regula PAR Control –Applications npensation – GCSC,TSSC, TCSC ous series compensators and their Control	8 int 4 tor 4 ators – 6
Uı	nit 2	 Control of dynam Power flow control Benefits of FAC compensation - Reactive power Reactive compensation Static versus pass STATCOM - Opcontrol Comparison bett Static series control Comparison bett Static series control Coperation and Control Static series control 	flow control in Power Systems mic power unbalances in Power System trol-Constraints of maximum transmission line loading CTS Transmission line compensation- Uncompensated line Shu Series compensation –Phase angle control. compensation – Shunt and Series compensation principles – ensation at transmission and distribution level . ssive VAR compensator,Static shunt compensators: SVC and peration and control of TSC, TCR and STATCOM Compensat tween SVC and STATCOM. mpensation: TSSC, SSSC -Static voltage and phase angle regula PAR Control –Applications mpensation – GCSC,TSSC, TCSC ous series compensators and their Control mping Unified Power Flow Controller: Circuit Arrangement	tor 4
Uı	nit 2	 Control of dynam Power flow control Benefits of FAC compensation - Reactive power Reactive compensation Static versus pass STATCOM - Opcontrol Comparison bether Static series control Coperation and Control Static series control 	flow control in Power Systems mic power unbalances in Power System trol-Constraints of maximum transmission line loading CTS Transmission line compensation- Uncompensated line Shu Series compensation – Phase angle control. compensation – Shunt and Series compensation principles – ensation at transmission and distribution level . ssive VAR compensator,Static shunt compensators: SVC and peration and control of TSC, TCR and STATCOM Compensat tween SVC and STATCOM. mpensation: TSSC, SSSC -Static voltage and phase angle regula PAR Control –Applications npensation – GCSC,TSSC, TCSC ous series compensators and their Control nping Unified Power Flow Controller: Circuit Arrangement control of UPFC- Basic Principle of P and Q control	8 int 4 tor 4 ators – 6
Uı	nit 2	 Control of dyname Power flow control Benefits of FAC compensation - Reactive power Reactive compensation Static versus pass STATCOM - Operation and Comparison bether Static series control Comparison bether Static series control Coperation and Comparison and comparis	flow control in Power Systems mic power unbalances in Power System trol-Constraints of maximum transmission line loading CTS Transmission line compensation- Uncompensated line Shu Series compensation – Phase angle control. compensation – Shunt and Series compensation principles – ensation at transmission and distribution level . ssive VAR compensator,Static shunt compensators: SVC and peration and control of TSC, TCR and STATCOM Compensat tween SVC and STATCOM. mpensation: TSSC, SSSC -Static voltage and phase angle regular PAR Control –Applications mpensation – GCSC,TSSC, TCSC ous series compensators and their Control nping Unified Power Flow Controller: Circuit Arrangement control of UPFC- Basic Principle of P and Q control al and reactivepower flow control- Applications.	8 int 4 tor 4 ators – 6
Uı	nit 2	 Control of dynam Power flow control Benefits of FAC compensation - Reactive power Reactive compensation Reactive compensation - Operation and Comparison bether Static series control Comparison bether Static series control Coperation and Comparison a	flow control in Power Systems mic power unbalances in Power System trol-Constraints of maximum transmission line loading CTS Transmission line compensation- Uncompensated line Shu Series compensation – Phase angle control. compensation – Shunt and Series compensation principles – ensation at transmission and distribution level . ssive VAR compensator,Static shunt compensators: SVC and peration and control of TSC, TCR and STATCOM Compensat tween SVC and STATCOM. mpensation: TSSC, SSSC -Static voltage and phase angle regula PAR Control –Applications npensation – GCSC,TSSC, TCSC ous series compensators and their Control nping Unified Power Flow Controller: Circuit Arrangement control of UPFC- Basic Principle of P and Q control	$ \begin{array}{c c} $

	conditioners			
	• IEEE standards on power quality.			
Tex	t Books			
1.	K R Padiyar, "FACTS Controllers in Power Transmission and 2007	Distribution	", New AgeInternationalPul	olishers,
2.	X P Zhang, C Rehtanz, B Pal, "Flexible AC Transmission Sys Berlin, 2006	stems- Mod	elling and Control",Springe	rVerlag,
Ref	erence Books			
1.	N.G. Hingorani, L. Gyugyi, "Understanding FACTS: Concep Transmission Systems", IEEE Press Book, Standard Publishe		0,	
2.	K.S.Sureshkumar ,S.Ashok , "FACTS Controllers & Applica Library, NIT Calicut,2003.	tions", E-b	ook edition, Nalanda Digi	tal
3.	G T Heydt, "Power Quality", McGraw-Hill Professional, 20	07.		
4.	T J E Miller, "Static Reactive Power Compensation", John W	iley and S	ons, Newyork, 1982.	
Use	ful Links			
1.	https://onlinecourses.nptel.ac.in/noc23_ee58/preview			
2	https://www.classcentral.com/course/swayam-facts-devices-11946	2		

$PO \rightarrow$	PO	PSO	PSO	PSO											
CO↓	1	2	3	4	5	6	6	8	9	10	11	12	1	2	3
CO 1	2	2	2	2	3	2						1	3		
CO 2	1	3	1	2	3								2		
CO 3	2	2	1	2	2	1	1						3		
CO 4	2	3	1	2	3							1	3		

		GovernmentColle	geofEngineering,Karad	
		FirstYearM.Techin	ElectricalPowerSystems	
		PS2234:SCADA	ystemsandApplications	
Teachin	gScher	ne	ExaminationScheme	
Lectures		03Hrs/week	MSE 20	
Tutorials	5	Hrs/week	ISE 20	
TotalCre	dits	03	ESE 60	
			Duration of ESE 02 Hr	s 30 Min
Course	Outcon	nes(CO)	I	
Students				
		e understanding of SCADA fundament		
			vstems and compare various architectures	
		ble of intelligent devices and communi		
4. Desig	gn SCA	DA applications for utility automation	and industrial sectors	
		Cou	seContents	Hours
		Cou	secontents	nours
Unit1	•	IntroductiontoSCADA		8
	•	Dataacquisitionsystems		
	•	EvolutionofSCADA		
	•	Communicationtechnologies		
Unit2	•	Monitoringandsupervisoryfunctions		6
	•	SCADAapplicationsinUtilityAutoma IndustriesSCADA	tion	
Unit3	•		-	8
Units	•	IndustriesSCADASystemComponer Schemes-RemoteTerminalUnit(RTU		0
	•	IntelligentElectronicDevices(IED)	/	
	•	ProgrammableLogicController(PLC		
	•	CommunicationNetwork,SCADASe	ver,SCADA/HMISystems	
Unit4	•	SCADAArchitecture		8
	•	VariousSCADA architectures, advant	agesanddisadvantagesofeachsystem	
	•	singleunifiedstandardarchitecture-II		
Unit5	•	SCADACommunication		8
	•	variousindustrialcommunicationtech		
	•	wiredandwirelessmethodsandfiberop		
	•	Openstandardcommunicationprotoco	ls	
Unit6	•	SCADAApplications:Utilityapplicat		6
	•	TransmissionandDistributionsectoro	perations, monitoring, analysis and	
	•	improvement		

				r
	 Industries-oil,gasandwater 			
	Casestudies, Implementation, SimulationExercises			
	Cusestudies,imprententution,isiniaiutionExercises			
Tor	tBooks			
Iex	LDOUKS			
		· •• • •		
1.	StuartA.Boyer:"SCADA-SupervisoryControlandDataAcquisit	ion'',Instrui	nentSocietyof	
	AmericaPublications,USA,2004			
2.	GordonClarke, DeonReynders: "PracticalModernSCADAProto	ocols:DNP3	.60870.5and	
	RelatedSystems", NewnesPublications, Oxford, UK, 2004		,	
Dof	erenceBooks			
Kei	erencebooks			
_				
1.	WilliamT.Shaw, "CybersecurityforSCADAsystems", PennWel	IBooks,200	6	
2.	DavidBailey, EdwinWright, "PracticalSCADA for industry", New	wnes,2003		
3.	MichaelWiebe,"Aguidetoutilityautomation:AMR,SCADA,and	lITsystems	forelectric	
	power",PennWell1999	2		
Lico	fulLinks			
Use	Turlinks			
1	https://www.udamu.com/course/loom coods in a day starting f			
	https://www.udemy.com/course/learn-scada-in-a-day-starting-f			
	scratch/?gclid=EAIaIQobChMI9dnilsrCgAMVD1orCh1HgQe0			
	<u>&utm campaign=LongTail la.EN cc.INDIA&utm content=de</u>	eal4584&ut	<u>m medium=udemyads&ut</u>	<u>m sourc</u>
	e=adwords&utm_term= ag_78875707083ad_5331338584	411 <u>kw</u> s	cada+trainingde_cdn	n <u>.pl</u>
	. ti_kwd-1010276589 li_9302765 pd		-	
2	https://www.udemy.com/course/arduino-scada-system-interface	e-with-ardu	ino/	
٢	antpost www.udomy.com/course/ardumo_soudu_system-interract			

$PO \rightarrow$	PO	PSO	PSO	PSO											
	1	2	3	4	5	6	6	8	9	10	11	12	1	2	3
CO↓															
CO 1	2	2	2	2	3							1	2		
CO 2	1	2	1	2	3	2						1	2		
CO 3	2	2	1	2	2	1	1						2		
CO 4	2	3	1	2	3	1						1	1		

		Govern	nent College of Engineering, Karad	
		First Year	M. Tech in Electrical Power Systems	
		PS	2215 : Power System Transients	
	~ -		-	
Teachin	g Sche	ne	Examination Scheme	
Lectures		03 Hrs/week	MSE 20	
Tutorials	5	Hrs/week	ISE 20	
Total Cr	edits	03	ESE 60	
			Duration of ESE 02 Hrs	s 30 Min
Course	Outcor	nes (CO)		
Student	s will 1	be able to:		
Student	5 WIII (
		-	s that could occur in power system and their mathematical	
	nulatio		power system for protecting equipment and personnel	
	-	-	power system for protecting equipment and personner	
3. Sele	ect ins	ulation coordination		
4. Des	ign po	wer system for transient ar	nalysis	
I			Course Contents	Hours
Unit 1	•	Fundamental circuit and	alysis of electrical transients	8
	•	Laplace Transform met	hod of solving simple Switching transients	
	•		ormal switching transients, Three-phase circuits and	
		transients Computation of power	system transients	
Unit 2	•	· · ·	putation – Matrix method of solution	8
	•	1 0	form- Computation using EMTP	_
	•	-	d temporary over voltages, Lightning	
	•	Physical phenomena of	lightning.	
Unit 3	•	Interaction between light	ntning and power system	8
	•		ing resistance and Earth Resistance	
	•	Switching: Short line of		
	•	Energizing transients -	closing and	
	•	re-closing of lines		
Unit 4	•		ction – over voltages induced by faults	
	•		ravelling waves on transmission line	8
			d Parameters Wave Equation	
	•	Lattice Diagrams – Atte	Behaviour of Travelling waves at the line terminations	
		Laure Diagrams All		1

	Multi-conductor system										
	and Velocity wave										
Uni	instruction of ortalitation, i interpre of instruction of ortalitation in the instructor	6									
	substation (AIS) and Gas Insulated Substation (GIS) Coordination between										
	insulation and protection level										
	Statistical approach										
Uni	• Protective devices	6									
	• Protection of system against over voltages										
	• lightning arresters, substation earthling										
Text	Books										
1.	Allan Greenwood, "Electrical Transients in Power System", Wiley & Sons Inc. New York, 1991	·									
Ref	erence Books										
1.	Juan A. Martinez-Velasco "Power System Transients Parameter Determination" © 2010 by Taylor and	d Francis									
	Group, LLC CRC Press is an imprint of Taylor & Francis Group, an Informa business										
2.	GevorkGharehpetian, AtousaYazdani, BehroozZaker "Power System TransientsModelling Simula	tion and									
	Applications" 1ST edition" ISBN 9781032185583248 Pages 212 B/W IllustrationsPublished January 27	, 2023 by									
	CRC Press										
Useful Links											
1.	1. <u>https://www.udemy.com/course/electrical-power-system-stability-beginner-to-advanced/</u>										
2	https://pdhonline.com/courses/e491/e491_new.htm										

$PO \rightarrow$	PO	PSO	PSO	PSO											
CO↓	1	2	3	4	5	6	6	8	9	10	11	12	1	2	3
CO 1	2	2	2	1	1	2	2					2	3		
CO 2	3	2	3	1	2	3	1					2	3		
CO 3	3	2	2	2	3	2	1					2	3		
CO 4	2	2	2	1	2	1							3		

			GovernmentCollegeofEngineering,Karad	
			FirstYearM. TechinElectricalPowerSystems	
			PS2225:AI Techniques	
Teachi	ngSche	me	ExaminationSch	neme
Lecture	es	03Hrs/week	MSE	20
Tutoria	ls	Hrs/week	ISE	20
TotalC	redits	03	ESE	60
			Duration of ESE	E 02 Hrs 30 Min
Course	outcor	mes(CO)		
Studen	tswillbe	eableto:		
1. De	monstr	ate understanding	of AI concepts, problems, and techniques	
			nniques and analyze production system characteristics	
3. Re	late kno	owledge representa	ation approaches using predicate logic and rule-based systems	
4. Sy	nthesize	e various AI reason	ning methods, including symbolic reasoning under uncertainty a	and statistical
rea	asoning			
	0			
<u>I</u>			CourseContents	Hours
		tisAI(ArtificialInte		
Unit1	Wha	-	elligence)?:TheAIProblems,TheUnderlyingAssumption,Whatare	eAITec 8
	Wha	ues,TheLevelOfTh		eAITec 8 WordPr
	Wha hniqu obler Searc	ues,TheLevelOfTh ns,StateSpaceSear ch,ProductionSyste	elligence)?:TheAIProblems,TheUnderlyingAssumption,Whatare neModel,CriteriaForSuccess,SomeGeneralReferences,OneFinalV rch&HeuristicSearchTechniques:DefiningTheProblemsAsAState ems,ProductionCharacteristics,ProductionSystemCharacteristics	eAITec 8 WordPr eSpace
	Wha hniqu oblet Searc suesl	ues,TheLevelOfTh ns,StateSpaceSear ch,ProductionSyste nTheDesignOfSea	elligence)?:TheAIProblems,TheUnderlyingAssumption,Whatare neModel,CriteriaForSuccess,SomeGeneralReferences,OneFinalV rch&HeuristicSearchTechniques:DefiningTheProblemsAsAState ems,ProductionCharacteristics,ProductionSystemCharacteristics arch	eAITec 8 WordPr eSpace
	Wha hniqu obler Searc suesl Prog	ues, The Level Of Th ns, State Space Sear ch, Production Syste In The Design Of Sea rams, Additional Pr	elligence)?:TheAIProblems,TheUnderlyingAssumption,Whatare neModel,CriteriaForSuccess,SomeGeneralReferences,OneFinalV rch&HeuristicSearchTechniques:DefiningTheProblemsAsAState ems,ProductionCharacteristics,ProductionSystemCharacteristics arch roblems.Generate-And-Test,HillClimbing,Best-	eAITec 8 WordPr eSpace
Unit1	Wha hniqu oblet Searc suesl Prog First	ues, The Level Of Th ns, State Space Sear ch, Production Syste In The Design Of Sea rams, Additional Pr Search, Problem Re	elligence)?:TheAIProblems,TheUnderlyingAssumption,Whatare neModel,CriteriaForSuccess,SomeGeneralReferences,OneFinalV rch&HeuristicSearchTechniques:DefiningTheProblemsAsAState ems,ProductionCharacteristics,ProductionSystemCharacteristics arch roblems.Generate-And-Test,HillClimbing,Best- eduction,ConstraintSatisfaction,Means-EndsAnalysis.	eAITec 8 WordPr eSpace s,AndIs
	Wha hniqu obler Searc suesl Prog First	ues, The Level Of Th ns, State Space Sear ch, Production Syste in The Design Of Sea rams, Additional Pr Search, Problem Re wledge Representat	elligence)?:TheAIProblems,TheUnderlyingAssumption,Whatare neModel,CriteriaForSuccess,SomeGeneralReferences,OneFinalV rch&HeuristicSearchTechniques:DefiningTheProblemsAsAState ems,ProductionCharacteristics,ProductionSystemCharacteristics arch roblems.Generate-And-Test,HillClimbing,Best- eduction,ConstraintSatisfaction,Means-EndsAnalysis. tionIssues:RepresentationsAndMappings,ApproachesToKnowle	eAITec 8 WordPr eSpace s,AndIs edgeRe 8
Unit1	Wha hniqu obler Searc suesl Prog First Know	ues, The Level Of Th ns, State Space Sear ch, Production Syste (n The Design Of Sea rams, Additional Pr Search, Problem Re wledge Represent at entation. Using Pred	elligence)?:TheAIProblems,TheUnderlyingAssumption,Whatare neModel,CriteriaForSuccess,SomeGeneralReferences,OneFinalV rch&HeuristicSearchTechniques:DefiningTheProblemsAsAState ems,ProductionCharacteristics,ProductionSystemCharacteristics arch roblems.Generate-And-Test,HillClimbing,Best- eduction,ConstraintSatisfaction,Means-EndsAnalysis. tionIssues:RepresentationsAndMappings,ApproachesToKnowle licateLogic:RepresentationSimpleFactsInLogic,RepresentingIns	eAITec 8 WordPr eSpace s,AndIs edgeRe 8
Unit1	Wha hniqu obler Searc suesl Prog First Know prese ndIsa	ues, The Level Of Th ns, State Space Sear ch, Production Syste In The Design Of Sea rams, Additional Pr Search, Problem Re wledge Representat entation. Using Pred Relationships, Cor	elligence)?:TheAIProblems,TheUnderlyingAssumption,Whatare neModel,CriteriaForSuccess,SomeGeneralReferences,OneFinalV rch&HeuristicSearchTechniques:DefiningTheProblemsAsAState ems,ProductionCharacteristics,ProductionSystemCharacteristics arch roblems.Generate-And-Test,HillClimbing,Best- eduction,ConstraintSatisfaction,Means-EndsAnalysis. tionIssues:RepresentationsAndMappings,ApproachesToKnowle licateLogic:RepresentationSimpleFactsInLogic,RepresentingIns mputableFunctionsAndPredicates,	eAITec 8 WordPr eSpace s,AndIs edgeRe 8
Unit1	Wha hniqu obler Searc suesl Prog First Know prese ndIsa Reso	ues, The Level Of Th ns, State Space Sear ch, Production Syste In The Design Of Sear rams, Additional Pr Search, Problem Re wledge Represent at entation. Using Pred a Relationships, Cor lution. Represent in	elligence)?:TheAIProblems,TheUnderlyingAssumption,Whatare neModel,CriteriaForSuccess,SomeGeneralReferences,OneFinalW rch&HeuristicSearchTechniques:DefiningTheProblemsAsAState ems,ProductionCharacteristics,ProductionSystemCharacteristics arch roblems.Generate-And-Test,HillClimbing,Best- eduction,ConstraintSatisfaction,Means-EndsAnalysis. tionIssues:RepresentationsAndMappings,ApproachesToKnowle dicateLogic:RepresentationSimpleFactsInLogic,RepresentingIns mputableFunctionsAndPredicates, ngKnowledgeUsingRules:ProceduralVersusDeclarativeKnow	eAITec 8 WordPr eSpace s,AndIs edgeRe 8
Unit1	Wha hniqu obler Searc suesl Prog First Know prese ndIsa Reso ledge	ues, The Level Of Th ns, State Space Sear ch, Production Syste in The Design Of Sea rams, Additional Pr Search, Problem Re wledge Representat entation. Using Pred Relationships, Cor lution. Representin e, Logic Programmi	elligence)?:TheAIProblems,TheUnderlyingAssumption,Whatare neModel,CriteriaForSuccess,SomeGeneralReferences,OneFinalV rch&HeuristicSearchTechniques:DefiningTheProblemsAsAState ems,ProductionCharacteristics,ProductionSystemCharacteristics arch roblems.Generate-And-Test,HillClimbing,Best- eduction,ConstraintSatisfaction,Means-EndsAnalysis. tionIssues:RepresentationsAndMappings,ApproachesToKnowle licateLogic:RepresentationSimpleFactsInLogic,RepresentingIns mputableFunctionsAndPredicates,	eAITec 8 WordPr eSpace s,AndIs edgeRe 8 tanceA
Unit1 Unit2	Wha hniqu obler Seard suesl Prog First Know prese ndIsa Reso ledge	ues, The Level Of Th ns, State Space Sear ch, Production Syste In The Design Of Sea rams, Additional Pr Search, Problem Re wledge Represent at entation. Using Pred Relationships, Cor lution. Represent in e, Logic Programmi bolic Reasoning Un	elligence)?:TheAIProblems,TheUnderlyingAssumption,Whatare neModel,CriteriaForSuccess,SomeGeneralReferences,OneFinalV rch&HeuristicSearchTechniques:DefiningTheProblemsAsAState ems,ProductionCharacteristics,ProductionSystemCharacteristics arch roblems.Generate-And-Test,HillClimbing,Best- eduction,ConstraintSatisfaction,Means-EndsAnalysis. tionIssues:RepresentationsAndMappings,ApproachesToKnowle dicateLogic:RepresentationSimpleFactsInLogic,RepresentingIns mputableFunctionsAndPredicates, ngKnowledgeUsingRules:ProceduralVersusDeclarativeKnow ng,ForwardVersusBackwardReasoning.	eAITec 8 WordPr eSpace s,AndIs edgeRe 8 tanceA
Unit1 Unit2 Unit3	Wha hniqu obler Searc suesl Prog First Know prese ndIsa Reso ledge Syml -mor Certa	ues, The Level Of Th ns, State Space Sear ch, Production Syste (nThe Design Of Sea rams, Additional Pr Search, Problem Re wledge Representat entation. Using Pred a Relationships, Cor lution. Representin e, Logic Programmi bolic Reasoning Un notonic Reasoning. Sainty Factors And Ru	elligence)?:TheAIProblems,TheUnderlyingAssumption,Whatare neModel,CriteriaForSuccess,SomeGeneralReferences,OneFinalW rch&HeuristicSearchTechniques:DefiningTheProblemsAsAState ems,ProductionCharacteristics,ProductionSystemCharacteristics arch roblems.Generate-And-Test,HillClimbing,Best- eduction,ConstraintSatisfaction,Means-EndsAnalysis. tionIssues:RepresentationsAndMappings,ApproachesToKnowle dicateLogic:RepresentationSimpleFactsInLogic,RepresentingIns mputableFunctionsAndPredicates, ngKnowledgeUsingRules:ProceduralVersusDeclarativeKnow ing,ForwardVersusBackwardReasoning. derUncertainty:IntroductionToNomonotonicReasoning,LogicsF StatisticalReasoning:ProbabilityAndBays'Theorem, ule-BaseSystems,BayesianNetworks,DempsterShaferTheory	eAITec 8 WordPr eSpace s,AndIs edgeRe 8 tanceA
Unit1 Unit2	Wha hniqu obler Searc suesl Prog First Know prese ndIsa Reso ledge Syml -mor Certa Fuzz	ues, The Level Of Th ns, State Space Sear ch, Production Syste in The Design Of Sea rams, Additional Pr Search, Problem Re wledge Representat entation. Using Pred Relationships, Cor lution. Representin e, Logic Programmi bolic Reasoning Un totonic Reasoning. State inty Factors And Ru y Logic. Weak Slot-	elligence)?:TheAIProblems,TheUnderlyingAssumption,Whatare neModel,CriteriaForSuccess,SomeGeneralReferences,OneFinalV rch&HeuristicSearchTechniques:DefiningTheProblemsAsAState ems,ProductionCharacteristics,ProductionSystemCharacteristics arch roblems.Generate-And-Test,HillClimbing,Best- eduction,ConstraintSatisfaction,Means-EndsAnalysis. tionIssues:RepresentationsAndMappings,ApproachesToKnowle dicateLogic:RepresentationSimpleFactsInLogic,RepresentingIns mputableFunctionsAndPredicates, ngKnowledgeUsingRules:ProceduralVersusDeclarativeKnow ang,ForwardVersusBackwardReasoning. derUncertainty:IntroductionToNomonotonicReasoning,LogicsF StatisticalReasoning:ProbabilityAndBays'Theorem, ule-BaseSystems,BayesianNetworks,DempsterShaferTheory -and-FillerStructures:SemanticNets,Frames.StrongSlot-and-	eAITec 8 WordPr eSpace s,AndIs edgeRe 8 tanceA
Unit1 Unit2 Unit3 Unit4	Wha hniqu obler Seard suesl Prog First Know prese ndIsa Reso ledge Syml -mor Certa Fuzz Fille	ues, The Level Of Th ns, State Space Sear ch, Production Syste In The Design Of Sea rams, Additional Pr Search, Problem Re wledge Represent at entation. Using Pred a Relationships, Cor lution. Represent in e, Logic Programmi bolic Reasoning Un totonic Reasoning Un totonic Reasoning Statisty Factors And Ru y Logic. Weak Slot- r Structures: Concep	elligence)?:TheAIProblems,TheUnderlyingAssumption,Whatare neModel,CriteriaForSuccess,SomeGeneralReferences,OneFinalW rch&HeuristicSearchTechniques:DefiningTheProblemsAsAState ems,ProductionCharacteristics,ProductionSystemCharacteristics arch roblems.Generate-And-Test,HillClimbing,Best- eduction,ConstraintSatisfaction,Means-EndsAnalysis. tionIssues:RepresentationsAndMappings,ApproachesToKnowle dicateLogic:RepresentationSimpleFactsInLogic,RepresentingIns mputableFunctionsAndPredicates, ngKnowledgeUsingRules:ProceduralVersusDeclarativeKnow ng,ForwardVersusBackwardReasoning. derUncertainty:IntroductionToNomonotonicReasoning,LogicsF StatisticalReasoning:ProbabilityAndBays'Theorem, ule-BaseSystems,BayesianNetworks,DempsterShaferTheory -and-FillerStructures:SemanticNets,Frames.StrongSlot-and- ptualDependency,Scripts,CYC	eAITec 8 WordPr eSpace 5,AndIs 8 edgeRe 8 tanceA 6
Unit1 Unit2 Unit3	Wha hniqu obler Searc suesl Prog First Know prese ndIsa Reso ledge Syml -mor Certa Fuzz Filler Gam	ues, The Level Of Th ns, State Space Sear ch, Production Syste In The Design Of Sea rams, Additional Pr Search, Problem Re wledge Represent at entation. Using Pred a Relationships, Cor lution. Represent in e, Logic Programmi bolic Reasoning Un totonic Reasoning Un totonic Reasoning Sa ainty Factors And Ru y Logic. Weak Slot- rstructures: Concep e Playing: Overview	elligence)?:TheAIProblems,TheUnderlyingAssumption,Whatare neModel,CriteriaForSuccess,SomeGeneralReferences,OneFinalW rch&HeuristicSearchTechniques:DefiningTheProblemsAsAState ems,ProductionCharacteristics,ProductionSystemCharacteristics arch roblems.Generate-And-Test,HillClimbing,Best- eduction,ConstraintSatisfaction,Means-EndsAnalysis. tionIssues:RepresentationSAndMappings,ApproachesToKnowle dicateLogic:RepresentationSimpleFactsInLogic,RepresentingIns mputableFunctionsAndPredicates, ngKnowledgeUsingRules:ProceduralVersusDeclarativeKnow ing,ForwardVersusBackwardReasoning. uderUncertainty:IntroductionToNomonotonicReasoning,LogicsF StatisticalReasoning:ProbabilityAndBays'Theorem, ule-BaseSystems,BayesianNetworks,DempsterShaferTheory -and-FillerStructures:SemanticNets,Frames.StrongSlot-and- ptualDependency,Scripts,CYC w,AndExampleDomain:Overview,MiniMax,Alpha-BetaCut-	eAITec 8 WordPr eSpace 5,AndIs 8 edgeRe 8 tanceA 8 ForNon 6 6
Unit1 Unit2 Unit3 Unit4	Wha hniqu obler Seard suesl Prog First Know prese ndIsa Reso ledge Syml -mor Certa Fuzz Filler Gam off,R	ues, The Level Of Th ns, State Space Sear ch, Production Syste (nThe Design Of Sea rams, Additional Pr Search, Problem Re wledge Representat entation. Using Pred a Relationships, Cor lution. Representin e, Logic Programmi bolic Reasoning Un totonic Reasoning Un totonic Reasoning State y Logic. Weak Slot- rStructures: Concept e Playing: Overview definements, Iterative	elligence)?:TheAIProblems,TheUnderlyingAssumption,Whatare heModel,CriteriaForSuccess,SomeGeneralReferences,OneFinalW rch&HeuristicSearchTechniques:DefiningTheProblemsAsAState ems,ProductionCharacteristics,ProductionSystemCharacteristics arch roblems.Generate-And-Test,HillClimbing,Best- eduction,ConstraintSatisfaction,Means-EndsAnalysis. tionIssues:RepresentationsAndMappings,ApproachesToKnowle dicateLogic:RepresentationSimpleFactsInLogic,RepresentingIns mputableFunctionsAndPredicates, ngKnowledgeUsingRules:ProceduralVersusDeclarativeKnow ing,ForwardVersusBackwardReasoning. iderUncertainty:IntroductionToNomonotonicReasoning,LogicsF StatisticalReasoning:ProbabilityAndBays'Theorem, ule-BaseSystems,BayesianNetworks,DempsterShaferTheory -and-FillerStructures:SemanticNets,Frames.StrongSlot-and- ptualDependency,Scripts,CYC w,AndExampleDomain:Overview,MiniMax,Alpha-BetaCut- vedeepening,TheBlocksWorld,ComponentsOfAPlanningSystem	eAITec 8 WordPr eSpace 5,AndIs 8 edgeRe 8 tanceA 8 ForNon 6 6 n,GoalS 8
Unit1 Unit2 Unit3 Unit4	Wha hniqu obler Seard suesl Prog First Know prese ndIsa Reso ledge Syml -mor Certa Fuzz Filler Gam off,R tackI	ues, The Level Of Th ns, State Space Sear ch, Production Syste in The Design Of Sea rams, Additional Pr Search, Problem Re wledge Representat entation. Using Pred a Relationships, Cor lution. Representin e, Logic Programmi bolic Reasoning Un notonic Reasoning State inty Factors And Ru y Logic. Weak Slot- rStructures: Concep ePlaying: Overview definements, Iterativ Planning, Nonlinear	elligence)?:TheAIProblems,TheUnderlyingAssumption,Whatare neModel,CriteriaForSuccess,SomeGeneralReferences,OneFinalW rch&HeuristicSearchTechniques:DefiningTheProblemsAsAState ems,ProductionCharacteristics,ProductionSystemCharacteristics arch roblems.Generate-And-Test,HillClimbing,Best- eduction,ConstraintSatisfaction,Means-EndsAnalysis. tionIssues:RepresentationSAndMappings,ApproachesToKnowle dicateLogic:RepresentationSimpleFactsInLogic,RepresentingIns mputableFunctionsAndPredicates, ngKnowledgeUsingRules:ProceduralVersusDeclarativeKnow ing,ForwardVersusBackwardReasoning. uderUncertainty:IntroductionToNomonotonicReasoning,LogicsF StatisticalReasoning:ProbabilityAndBays'Theorem, ule-BaseSystems,BayesianNetworks,DempsterShaferTheory -and-FillerStructures:SemanticNets,Frames.StrongSlot-and- ptualDependency,Scripts,CYC w,AndExampleDomain:Overview,MiniMax,Alpha-BetaCut-	eAITec 8 WordPr eSpace 5,AndIs 8 edgeRe 8 tanceA 8 ForNon 6 6 n,GoalS 8

Un	16 NaturalLanguageProcessing:Introduction,SyntacticProcessing,SemanticAnalysis,SemanticAnalysis,DiscourseAndPragmaticProcessing,SpellCheckingConnectionistModels:Introduction:I opfieldNetwork,LearningInNeuralNetwork,ApplicationOfNeuralNetworks,RecurrentNetworks,DistributedRepresentations,ConnectionistAIAnd SymbolicAI.								
Tex	tBooks								
1.	ElaineRichandKevinKnight"ArtificialIntelligence",2ndEditie	on,TataMcgr	aw-Hill,2005.						
Ref	erenceBooks								
1.	StuartRusselandPeterNorvig, "ArtificialIntelligence:AModer Edition,PrenticeHall,2009.	nApproach",	3rd						
Use	fulLinks								
1	ps://www.udemy.com/course/artificial-intelligence-az/								
2	ps://onlinecourses.nptel.ac.in/noc22_cs56/preview_								

$PO \rightarrow$	PO	PSO	PSO	PSO											
CO↓	1	2	3	4	5	6	6	8	9	10	11	12	1	2	3
CO 1	2	2	2	1	1	2	2				1	1	2		
CO 2	3	2	3	1	2	3	1				1	2	3		
CO 3	3	2	2	1	3	2	1					2	2		
CO 4	2	3	1	1	2	1					1		3		

			Government	CollegeofEng	ineering,Karad	l		
			FirstYearM.T	echinElectric	alPowerSysten	15		
			PS2235:Indus	trialLoadMod	ellingandContro	1		
Teachin	gScher	ne				ExaminationSch	eme	
Lectures		03Hrs/week				MSE	20	
Tutorials	5	Hrs/week				ISE	20	
TotalCre	dits	03				ESE	60	
						Duration of ESE	02 Hrs	30 Min
Course	Outcon	nes(CO)				1	-	
Students			ario and demand si	ide manageme	nt strategies in a	industrial settings		
			odels and optimiza	-	-			
3. Illust						ndustries, along wi	th filter	
		act of reactive p	ower management	t and power au	ality on industr	ies, along with filte	er applica	ation
	<u> </u>	<u> </u>		CourseConte				Hours
Unit1	•	LoadCurves-	LoadShapingObje		ment-Industrial	LoadManagement		8
	•		nofIndustrialLoads		g			
Unit2	••••	Directloadco Bottomupapp	cing–Dynamicand ntrol-Interruptible proach-scheduling- andcontrolalgorith	loadcontrol -Formulationo	floadModels			8
Unit3	•		ermanagementinin filtersEnergysavin		ols-powerquality	vimpacts		6
Unit4	•	Coolingandh loadprofiling Modeling-Co Types-Contro Optimalopera	eatingloads polstorage olstrategies	-				8
Unit5	•		lcontrolstrategies g-Operationmodel ng	S				6

Un Tex	it6 • SelectionofSchemesOptimalOperatingStrategies • Peakloadsaving • ConstraintsProblemformulation-Casestudy • IntegratedLoadmanagementforIndustries	6								
1.	C.O.Bjork"IndustrialLoadManagement-Theory,PracticeandSimulations",Elsevier,the Netherlands,19892									
2.	C.W.GellingsandS.N.Talukdar, Loadmanagementconcepts.IEEEPress, NewYork, 1986									
Ref	erenceBooks									
1.	Y.ManichaikulandF.C.Schweppe,"PhysicallybasedIndustrialload",IEEETrans.onPAS, April1981									
2.	H.G.Stoll,"LeastcostElectricityUtilityPlanning",WileyIntersciencePublication,USA,1989.									
3.	I.J.NagarathandD.P.Kothari,.ModernPowerSystemEngineering.,TataMcGrawHillpublishers, NewDelhi,1995									
4.										
Use	UsefulLinks									
1	https://onlinecourses.nptel.ac.in/noc23_ee128/preview									

$PO \rightarrow$	PO	PSO	PSO	PSO											
CO↓	1	2	3	4	5	6	6	8	9	10	11	12	1	2	3
CO 1	3	2	2	1	1	2						2	2		
CO 2	2	2	2	3	2	3	1				1	2	2		
CO 3	3	2	2	2	1	2	1				1	2	3		
CO 4	2	2	2	1	2	1						1	3		

Government College of Engineering, Karad									
	First Year M. Tech in Electrical Power Systems								
PS2208: Mini Project/ Industrial Training									
Teaching Scheme Examination Scheme									
Lee	ctures		MSE						
Tu	torials	Hrs/week	ISE	100					
Tot	al Credits	02	ESE						
Pra	cticals	04 Hrs/week	Duration of ESE	03 Hrs					
Со	urse Outco	mes (CO)							
Stı	idents will	be able to:							
1.		echnical reports d al standards and b	locumenting project objectives, methodologies, findings, and conclusion pest practices.	ns, adhering to					
2.			m members or industry professionals, communicate project progress, c s in a clear and concise manner.	hallenges, and					
3.									
	Course Contents								
Students should undergo industrial training or carry out mini project as per the guidelines given by respective guide.									