Government College of Engineering, Karad (An Autonomous Institute of Government of Maharashtra) SCHEME OF INSTRUCTION & SYLLABI Programme: Civil Engineering Scheme of Instruction for First Year of M. Tech. (PG) Degree in Civil Engineering (Structural Engineering)

Semester I

Sr.	Course	Course Title	L	Т	Р	Contact	Credits		ΕΣ	KAM SCH	IEME	
No.	Code					Hrs/Wk		CT1	CT2	TA/CA	ESE	TOTAL
	SE101	Theory of Elasticity and	3	1		4	4	15	15	10	60	100
		Plasticity										
	SE102	Mechanics of Structures	3	1		4	4	15	15	10	60	100
	SE103	Advanced Design of	3	1		4	4	15	15	10	60	100
		Concrete Structures										
	SE1*4	Elective I :Repairs and	3	1		4	4	15	15	10	60	100
		Rehabilitation of Structures										
	SE107	Dynamics of Structures	3			3	3	15	15	10	60	100
	SE106	Laboratory Practice I			4	4	2			50	50	100
		Total	15	4	4	23	21	75	75	100	350	600

CT1- Class Test 1, TA/CA- Teacher Assessment/Continuous Assessment

CT2- Class Test 2, ESA- End Semester Examination (For Laboratory: End Semester Performance)

*List of electives in Semester –I

SE 114 Advances in concrete composites

SE 124 Design of Foundations

SE 134 Repairs and rehabilitation of structures.

Government College of Engineering, Karad (An Autonomous Institute of Government of Maharashtra) SCHEME OF INSTRUCTION & SYLLABI Programme: Civil Engineering Scheme of Instruction for First Year of M. Tech. (PG) Degree in Civil Engineering (Structural Engineering) Semester II

Sr.	Course	Course Title	L	Т	Р	Contact	Credits		E	XAM SCH	IEME	
No.	Code					Hrs/Wk		CT1	CT2	TA/CA	ESE	TOTAL
	SE201	Theory of Plates and Shells	3	1		4	4	15	15	10	60	100
	SE202	Finite Element Method	3	1		4	4	15	15	10	60	100
	SE 203	Earthquake Engineering	3	1		4	4	15	15	10	60	100
	SE204	Advanced Design of Steel Structure	3	1		4	4	15	15	10	60	100
	SE205	Elective II: Design of R. C. C. Bridges.	3	1		4	4	15	15	10	60	100
	SE 206	Laboratory Practice II	-		4	4	2			50	50	100
	SE 207	Seminar I	-		2	2	1			50		50
		Total	15	05	06	26	23	75	75	150	350	650

CT1- Class Test 1 TA/CA- Teacher Assessment/Continuous Assessment

CT2- Class Test 2 ESE- End Semester Examination (For Laboratory: End Semester Performance)

*List of Electives in Semester -II

SE 215 Design of RCC Bridges

SE 225 Design of folded plates and shells

SE 235 Stability of Structures.

Government College of Engineering, Karad (An Autonomous Institute of Government of Maharashtra) SCHEME OF INSTRUCTION & SYLLABI Programme: Civil Engineering Scheme of Instruction for Second of M. Tech. (PG) Degree in Civil Engineering (Structural Engineering) Semester III

Sr.	Course	Course Title	L	Т	Р	Contact	Credits	EXAM	SCHEME
No.	Code					Hrs/Wk		TA/CA	TOTAL
	SE301	Seminar II	-	-	2	2	1	50	50
	SE302	Dissertation Phase I	-	-	20	20	10	100	100
		Total	-	-	20	22	11	150	150

TA/CA- Teacher Assessment/Continuous Assessment.

ESE- End Semester Examination (For Laboratory: End Semester Performance).

Semester IV

Sr.	Course	Course Title	L	Т	Р	Contact	Credits	EX	AM SCH	EME
No.	Code					Hrs/Wk		TA/CA	ESE	TOTAL
	SE401	Dissertation Phase II	-	-	30	30	20	100	200	300
		Total	-	-	30	30	20	100	200	300

TA/CA- Teacher Assessment/Continuous Assessment.

ESE- End Semester Examination (For Laboratory: End Semester Performance).

Programme Educational Objectives (PEO)

- PEO 1 To impart concepts of structural engineering through the use of analytical techniques, experiments, and other modern engineering tools in the analysis and design of variety of civil engineering structures effectively.
- PEO 2 Spreading the recent developments in structural engineering field through educating the students using updated codal provisions.
- PEO 3 To develop habit of individual critical thinking through capacity building and research in analyzing a complex problem in structural engineering field.
- PEO 4 To develop skill of communicating structural engineering designs effectively in written, graphical, and oral form.

Students of PG Civil-Structural Engineering programme at the time of completion of the programme will :

- a. Acquire knowledge of structural engineering and be able to discriminate, evaluate, analyze and integrate existing and new knowledge
- b. Be able to critically analyze and carry out independent research on complex problems of structural engineering.
- c. Be able to conceptualize and design civil engineering structures considering various socio-economic public health and safety factors.
- d. Be able to carry out systematic research, design appropriate experiments and tools, and interpret experimental and analytical data for development of technological knowledge in structural engineering.
- e. Be able to create, decide and judiciously apply appropriate resources, modern tools & techniques in handling various complex problems in structural engineering.
- f. Be able to function productively with others as part of collaborative and multidisciplinary team.
- g. Be able to understand critical issues for professional practice such as detailing work and interaction with contractors during construction phase of a project.
- h. Be able to communicate effectively with written, oral and visual means, the design and research outcomes to the stakeholders.
- i. Be able to recognize state-of-the- art need and will be able to engage in lifelong learning.
- j. Be able to understand professional and ethical responsibility while carrying out research and design activities.
- k. Be able to critically analyze, scrutinize and rectify one's decisions and actions and apply self corrective measures.

Ge	overnment College of Eng	vineering Ka	ad
	First Year M. Tech. Sem		
	SE101: THEORY OF ELASTICIT		
Teaching Scheme		Examination Scher	ne
Lectures	3 Hrs/Week	CT1	15
Tutorial	1 Hr/week	CT2	15
		ESE	60
	Total Credits 3+1=4	ТА	10
Course Objectives			
1	Post Graduate should understand elastic	behaviour of materials.	
2	Post Graduate should stress-strain system	n at a point in material.	
3	Post Graduate should understand applica	tion of theory of elastic	ty in plane strain
	and plain stress conditions, bending, and	torsion.	
4	Post Graduate should understand princip		
5	Post Graduate should understand applica	tion of theory of plastic	city in failure of
	materials.		•. • • •
6	Post Graduate should understand applica		city in practical
	applications in in analysis and design of	structures.	
Units	Course Contents		Hours
Unit I	Stress & Strain at a point, static indet	erminacy of	09
	problem of 3-D elasticity, D.E. of		
	equilibrium in rectangular, cylindrica	l & spherical co-	
	ordinates, Generalized Hooke's Law,		
	Strain compatibility equations, Stress	compatibility	
	equations, practical implications of	· · · · · · · · · · · · · · · · · · ·	
	Laplacian forms, Stresses on an oblig	ue plane, stress &	
	strain invariants, principal stresses &	-	
	problems, Airy's stress function & its		
		"PP-10 anionol	
Unit II	Stress concentrations around hole in a	an infinitely large	05
	plate, thick cylinders & spheres, rotat	• •	
		6	
Unit III	Torsion-Shafts of circular and non cir	cular prismatic	04
	sections, Saint Venant theory warping	g function approach,	
	stress approach, membrane analogy.		
Unit IV	Basic equations, similarities & different	ences when	05
	compared with elasticity, idealized m		
	mechanical. models, neck formation,		
	deviatoric stresses, invariants of devia	•	
	various empirical stress - strain relation		
	plastic flow, yield criteria, von Misse	-	
	criteria, strain hardening, Drucker's p	•	
	failure theories		
Unit V	Elastic perfectly plastic materials-thic	k cylinders, thick	05
	spheres, plastic hinge formation in be	•	
	T, circular cross sections, Shape factor		
	of beam, elasto-plastic deflections of		
	rectangular cross sections, residual st		
	Introduction to strain hardening problem		
Unit VI	Collapse load calculations for circula		02
	symmetric loadings.	r mus mu un	
Tutorial			
	A set of Tutorial/ problems based o	n ahove svllahus is	
	to be submitted.	n abore synabus 18	
	to be submitted.		

Course Outcomes	
1	Post Graduate will be able to understand behavior of
	material
2	Post Graduate will understand stress strain behavior at a
	point in material
3	Post Graduate will be able to apply theory of elasticity in
	plane strain and plain stress conditions, bending, and torsion
4	Post Graduate will be able to apply theory of plasticity in
	failure of materials in analysis and design of structures.
Text Books	
1.	Theory of Elasticity – S. Timoshenko & J. N. Goodier, McGraw Hill, Singapore.
2.	Theory of Elasticity: Filonenko, Borodich, Foreign Language Publication House
	Theory of Elasticity: Sadhu Sing, Khanna Publishers, Delhi
	Theory of plasticity: Sadhu Sing, Khanna Publishers, Delhi
References	
1	Structural Mechanics with Introductions to Elasticity and Plasticity –
	By Venkatraman, Sharad A. Patel, McGrawHill Book Company, New York.
2	Solid Mechanics S. M. A. Kazimi, Tata McGraw Hill, New Delhi
3	Theory of Plasticity – Chakraborty J., Tata Mc Graw Hill Publishing Company Limited.
4	Theory of Plasticity – R. Hill, Van nastrod, USA
Useful Links	
1	nptel.iitk.ac.in/
2	www.myeducationkey.com/
3	www.wikipedia.Newton.com/

	а	b	С	d	е	f	g	h	i	j	k
CO1		\checkmark								\checkmark	
CO2	\checkmark	\checkmark	\checkmark							\checkmark	
CO3	\checkmark	\checkmark	\checkmark							\checkmark	
CO4	\checkmark	\checkmark	\checkmark								

Knowledge Level	CT1	CT2	ТА	ESE
Remember	3	3	1	10
Understand	3	3	2	10
Apply	3	3	2	10
Analyze	2	2	2	10
Evaluate	2	2	2	10
Create	2	2	1	10
Total	15	15	10	60

	Governme	ent College of E	Ingineering	Karad	
	First Year M	. Tech. Civil-St	ructural E	ngineering	
	SE1)2: Mechanics	of Structur	es	
Teaching			Examinat	tion Scheme	
Lectures	3 Hrs/Week		CT1	15	
Tutorial	1 Hr /week	_	CT2	15	
Total Cre	dits 4		TA	10	
Course O	Dbjectives		ESE	60	
	st Graduate should under	stand moving load anal	veie		
	st Graduate should learn a				
	st Graduate should study of	-		ation.	
	st Graduate shall force and				
	st Graduate should unders				
			•		
Course C					Hours
Unit I	Influence Line Diagram				06
	frames & two hinged ar	ches. Muller-Breslau's	Principle & Mom	ent distribution	
Unit II	method Beams Curved in Plan:	Datarminata & Indatar	minata haama aur	und in plan	04
Unit III	Beams on Elastic Found				04
	Deams on Liastic Found	auons. Analysis of him	linte, senii-ininit		05
Unit IV	Beam columns: Concep	t of geometric & mater	ial nonlinearity.	Governing differential	04
	equation, Analysis of be				
	conditions. Stiffness and	d carry-over factors for	beam-columns, f	ixed end actions due	
	to various loads.				
Unit V	Stiffness method of stru				07
Unit VI	continuous beams, truss Member Oriented Stiffr				04
	grid, pin & rigid jointed			-	04
	matrices on Structure as				
	assembly rules. Calcula			,	
Tutorial	A set of Tutorial/ prob	lower board on above	aullahug ig to ho		
	A set of Tutorial/ prob	nems based on above s	synabus is to be	submitted.	
Course O	Dutcomes				
	st Graduate will understan	<u> </u>			
	st Graduate will be able to	1 2			
	st Graduate will be able to	-	· · ·		tion.
	st Graduate will be able to	** *		of analysis.	
5 Pos	st Graduate will understan	a theory and concept of	f beam-column.		
Text Boo	ks				
	sic structural Analysis by	C.S.Rcddy, Tata Mc G	raw Hill, Delhi		
	trix Analysis of Framed S			shing, Delhi.	
		•			
Referenc					
	eory of Elastic Stability by				
	chanics of Structures Vol			<u> </u>	
	vanced Theory of Structures	•			
	alysis of Structures Vol.1 uctural Analysis by Negi	•		sher, Delill.	
JSIT	uctural Analysis by Negl	and Jangiu, Tata Mic Of	aw mii, Deilii		

	А	В	c	d	e	F	g	h	i	J	k
CO1	\checkmark	\checkmark	\checkmark				\checkmark	\checkmark		\checkmark	
CO2	\checkmark	\checkmark	\checkmark			\checkmark	\checkmark	\checkmark		\checkmark	
CO3	\checkmark	\checkmark	\checkmark			\checkmark	\checkmark	\checkmark		\checkmark	
CO4	\checkmark	\checkmark	\checkmark					\checkmark			

Knowledge Level	CT1	CT2	ТА	ESE
Remember	3	3	1	10
Understand	3	3	2	10
Apply	3	3	2	10
Analyze	2	2	2	10
Evaluate	2	2	2	10
Create	2	2	1	10
Total	15	15	10	60

	(Governme	ent College of	Engine	ering Kara	d	
			. Tech. Civil-S	0	0		
			nced Design o		-	-	
Teaching	Scheme			Ex	amination Sch	eme	
Lectures		3 Hrs/Week		СТ		15	
Tutorial		1 Hr/week		СТ	2	15	
Total Crea	lits	4		TA	1	10	
				ES	E	60	
Course O	bjectives						
1		luate should ur ng conditions.	derstand analysis and	l design of	various types of	slabs as per sit	uation
2			derstand analysis and	l design of	different types of	of footings as n	er
2			ructure (soil condition		uniforent types (n rootings us p	01
3			derstand analysis and		different types of	of water tanks a	as per
5		and loading co		ucoign of	aniferent types (to per
4			derstand analysis and	l design of	different struct	ures using met	hod of
т			ept of prestressing, its				1100 01
	presuessi	ing, study cone	ept of prestressing, its	s memous a		luci loaunig.	
Course C	ontents						Hour
Unit I		and design of t	lat slab, grid slab, cire	cular slah			06
Unit II			combined footing & ra		on		05
Unit III			overhead water tank –			h flat bottom	05
	-	-		Rectangui	ar & circular wi		05
	Design of	staging for wi	nd & seismic loads .				
Unit IV	Mechanic	s of pre-stress	ed concrete, stress cor	ncent stren	oth concept & lo	ad halancing	05
Oline I v			naterial, systems of pr				05
Unit V			oncrete, beams, box,				05
Unit V		lock, IS code 1		ra i secu	nis, Sileai, Delle	cuon, Design	05
Unit VI			ntinuous beams, parti	al practrace	ing circular pro	strassing	04
	pipes.	a design of co	initiadus dealiis, parti	ai presuess	ing, cheulai pre	suessing –	04
	pipes.						
Tutorial							
1 utor iui	A set of T	Futorial/ prob	lems based on above	e syllabus i	is to be submitt	ed.	-
		···· ·		.			
Course O	utcomes						·
1	Post Grad	luate will unde	rstand analysis and de	esign of var	ious types of sla	bs as per situat	tion
	and loading	ng conditions.	·	C	• •	•	
2	Post Grad	luate will unde	rstand analysis and de	esign of dif	fferent types of f	ootings as per	
	superstruc	cture and subst	ructure (soil condition	ns).			
3	Post Grad	luate will unde	rstand analysis and de	esign of dif	fferent types of v	vater tanks as p	per
	situation a	and loading co	mbinations.	-		_	
4	Post Grad	luate will be al	ole to perform analysis	s and desig	n of different s	tructures using	5
	method of	f prestressing,	study concept of pres	tressing, its	methods and be	haviour under	
	loading.						
5	Post Grad	luate will be a	ble to perform analysi	is and desig	n of various typ	es of slabs as p	ber
	situation a	and loading co	nditions.				
	ks & Refe						
1	Reinforce	ed concrete, Li	mit state design by As	shok K. Jaiı	n, New Chand &	bros. Roorkee	·.
2	Advanced	Reinforced C	oncrete design by P.C	Varoese -	- Prentice Hall o	of India Delhi	
3			oncrete design by N.				ors
J	Dehli.		oncrete design by IN.	isiisiinarajt			.015,
4		Concrete by	S. Ramamurtham, Dha	annat Rai &	z Sons		
4 5			N. Krishnaraju	unput itai o	. 50115.		
<u> </u>		l Concrete by					
0	1105015500	L CONCICIC Dy	I. I. L/III.				

Usefu	l Links
1	nptel.iitk.ac.in/
2	www.myeducationkey.com/
3	www.wikipedia.com/

	А	b	С	D	e	f	g	h	i	J	Κ
CO1		\checkmark		\checkmark			\checkmark	\checkmark			
CO2								\checkmark			
CO3				\checkmark				\checkmark			
CO4		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark			

Knowledge Level	CT1	CT2	ТА	ESE
Remember	3	3	1	10
Understand	3	3	2	10
Apply	3	3	2	10
Analyze	2	2	2	10
Evaluate	2	2	2	10
Create	2	2	1	10
Total	15	15	10	60

G	overnment C	College of Eng	zineering Ks	arad
0		st Year B. Tech. Sem		
		SE114: ELECTIVE		
		S IN CONCRETE (
Teaching Scheme			Examination Sch	eme
Lectures	3 Hrs/Week		CT1	15
Tutorial	1 Hr/Week		CT2	15
			ESE	60
	To	tal Credits 3+1=4	TA	10
Course				ł
Objectives				
1	Students should u	inderstand weakness	of plain concrete,	and understand the
		nt in trend in concre	-	
2	-	vanced applications	*	rials.
3		anufacturing and pro	-	
			<u></u>	
Course C	ontents			Hours
Unit I		composites: Introduc	tion to Fiber	06
		rete, types of fibers,		
		stituent materials. M		•
	mixing, casting m		in proportion,	
	mixing, custing in	iethous.		
Unit II	Properties of fres	hly mixed concrete (fiber reinforced	06
	concrete), workat	00		
		echanism of Fiber R		
	Concrete.		emiorceu	
Unit III		informed compareto y		06
	Testing of fibre re	00		
		bending. Various to	-	
		viour Design aspe	cts of reinforced	
I I I I I I I	concrete structure		1 1 1 1	06
Unit IV		troduction, materials		06
		uction techniques, de	-	
	tension, application	ons and merits as str	uctural materials.	
Unit V	Silica Fume Conc	06		
	chemical properti			
	· •	operties of silica fun		
	state, mechanical	properties and dural	oility of silica fume	:
	concrete.			
Unit VI	-	e: Introduction, Class		06
		stituent materials, po	• • •	
	concrete, polyme	r concrete, applicatio	ons.	
Tutorial				
	A set of Tutorial	s / Problems based	on above syllabus	
	is to be submitte	d		
Course Outcomes				
	Students will hav	e knowledge of wea	kness of plain	
		lerstand the latest de	-	
	in concrete comp		*	
		erstand advanced ap	plications of	
	composite materi		1	
		erstand manufacturi	ng and properties o	f
		tes such as fibre rein		-

	ferrocement, silica fume concrete and polymer concrete.
Text Books	
1	Concrete Technology & Design by R N. Swamy, Surrey University Press, UK.
2	Special Structural Concretes by Rafal Siddiquc, Galgotia Pub. Pvt.ltd., India.
3	Fiber Reinforced Cement Composites by P. N. Balaguru, S. P. Shah, Mc-Graw Hill, USA
4	Fiber Cement and Fiber Concrete by D. J. Hannant, John Wiley and Sons, USA.
5	Fracture Mechanics and Structural Concrete by Bhuhsan L. Karihaloo, Anybook Ltd.

	а	b	С	d	е	f	g	h	i	j	k
CO1											
CO2	\checkmark	\checkmark	\checkmark			\checkmark			\checkmark	\checkmark	
CO3											

Knowledge Level	CT1	CT2	ТА	ESE
Remember	3	3	1	10
Understand	3	3	2	10
Apply	3	3	2	10
Analyze	2	2	2	10
Evaluate	2	2	2	10
Create	2	2	1	10
Total	15	15	10	60

Go	overnment College of Engineering Ka	rad
	First Year B. Tech. Semester-I	
	SE124: ELECTIVE- I	
	DESIGN OF FOUNDATIONS	
Teaching Scheme	Examination Scher	me
Lectures	3 Hrs/Week CT1	15
Tutorial	1 Hr/Week CT2	15
	ESE	60
	Total Credits 3+1=4 TA	10
Course Objectives		
1	Post Graduate should understand theories of failure of soil	with respect to
	foundation engineering.	
2	Post Graduate should learn methods for design of shallow	foundation.
3	Post Graduate should learn methods for design of combine	
	foundation.	e
4	Post Graduate should understand analysis and design of d	rilled piers and
	well foundation.	1
5	Post Graduate should understand analysis and design	of simple machin
	foundations using I. S. Code and also Vibration isolation.	r
Course Co	· · · · · · · · · · · · · · · · · · ·	Hours
Unit I	Theories of failure of soil, Determination of ultimate	06
	bearing capacity, Dynamic bearing capacity. Different	
	methods of design of shallow foundations for axial and	
	eccentric load.	
Unit II	Design of wall footing, strap footing, combined footing,(06
olint II	Rectangular & Trapezoidal)	00
Unit III		06
	Raft foundation, different types, Design considerations	00
	and various methods of analysis of raft.	06
Unit IV	Determination of load carrying capacity of single pile,	06
	rock socketing, Negative skin friction, Design of axially	
	loaded piles, design of pile groups and pile cap, under-	
** *. **	reamed piles.	0.6
Unit V	Analysis and design of drilled piers and well foundation.	06
Unit VI	Dynamic response of soil, criteria for satisfactory	06
	machine foundation, framed and massive foundation,	00
	Analysis and design of simple machine foundations	
	using I. S. Code.	
	Vibration isolation.	
Tutorial		
	A set of Tutorial (much long based on above sullabus is	
	A set of Tutorial/ problems based on above syllabus is	
Course Outcomes	to be submitted.	
1	Post Graduate will understand theories of failure of soil	
-	with respect to foundation engineering.	
2	Post Graduate will learn methods for design of shallow	
	foundation.	
3	Post Graduate will use different methods for design of	
	combined footing and raft foundation.	
4	Post Graduate will be able to perform analysis and	
	design of drilled piers and well foundation.	
5	Post Graduate will be able to perform analysis and	
	design of simple machine foundations using I. S. Code	
	and also Vibration isolation.	
Text Books		

	Winterkorn H. F. and Fang H. Y.,"Foundation Engineering Hand Book"-Van
1	Nostand Reinhold Company,1975
2	Bowles J.E.," Foundation Analysis and Design"-McGraw Hill Book
	Company,1968.
3	Vibration Analysis and Design of Foundations for Machines and Turbines"-
	Major A. Collets Holding Ltd., 1962.
4	Kany M., "Design of Raft Foundations" Elithelm Earnest and Sohn. 1974.
5	Goodman, L. J.and Karol, R. H.,"Theory and Practice of Foundation
	Engineering", McMillan, USA, 1968.
6	Soil Dynamics," Shamsher Prakash, McGraw Hill Book Co
7	D. D. Barkan, "Dynamics of Bases & Foundation." McGraw Hill Book Co, NY.

г

	Government	College of Eng	gineerir	ng Karad					
		First Year B. Tech. Semo	ester-I						
		SE134: ELECTIVE							
	REPAIR AND	REHABILITATION	OF STRU	CTURES					
Teaching Schen	ne		Examinat	ion Scheme					
Lectures	3 Hrs/Week		CT1	15					
Tutorial	1 Hr/Week		CT2	15					
			ESE	60					
		Total Credits 3+1=4	TA	10					
Course									
Objectives	1 D (C 1 (1 11 1 4 1	614						
		should understand caus			C				
		should understand Fac		tenance, importa	ance of				
		Various aspects of Inspe			4 1				
		should understand caus	es of distre	ess in concrete /s	teel				
	structures	ahauld laam. Damaaaa		and arralmation a	• • d • l •				
		should learn Damage a							
		should learn methods o			na snoula				
Carrie		nic Retrofitting of reinfo	orcea concre						
Unit I	Contents	to deterioration of struc	turas with a		ours 06				
		on. Maintenance, Repa			00				
		-							
		Facets of Maintenance, importance of Maintenance, Various							
		aspects of Inspection, Assessment procedure for evaluating a damaged structure, causes of deterioration.							
Unit II	Ŭ	Distress in concrete /steel structures							
		Types of damages; Sources or causes for damages; effects of							
	• -	damages; Case studies. Quality assurance for concrete –							
	-	- •							
	•	Strength, Durability and Thermal properties, of concrete –							
		Cracks, different types, causes – Effects due to climate, temperature, Sustained elevated temperature, Corrosion –							
	_	Effects of cover thickness.							
Unit III		Damage assessment and evaluation models							
enit m	_	Damage assessment and evaluation models Damage testing methods; Non-destructive Testing Techniques,							
	U								
	1 0 0	Epoxy injection, Shoring, Underpinning, Corrosion protection techniques – Corrosion inhibitors, Corrosion resistant steels							
	_	techniques – Corrosion inhibitors, Corrosion resistant steels, Coatings to reinforcement, cathodic protection.							
Unit IV	Rehabilitation				06				
ome iv			uctural stabi	lity.	00				
		Grouting; Detailing; Imbalance of structural stability; Polymer concrete, Sulphur infiltrated concrete, Fibre							
	-	crete, High strength con							
			-	-					
		concrete, Vacuum concrete, Self compacting concrete, Geopolymer concrete, Reactive powder concrete, Concrete							
	- ·	made with industrial wastes. Case studies							
Unit V	Methods of R				06				
		Grouting; Epoxy-cemen	t mortar in	jection: Crack					
	-	igthening of Structura		·					
	-	stressed due to con		-					
		ngineered demolition m		-					
Unit VI		fitting of reinforced cor			06				
		Considerations in retrofitt			-				
		RC frame building – Str	-						
		load path; Structural dam							
		Quality of workmanship a	-						
		of retrofitting techniques							
	Retrofitting str	ategies for RC buildings	- Structural	level (global)					

	retrofit methods; Member level (local) retrofit methods;	
	Comparative analysis of methods of retrofitting.	
Tutorial		
	A set of Tutorial/ problems based on above syllabus is to be submitted.	
Course Outcomes		
1	Post Graduate will understand causes of deterioration.	
2	Post Graduate will understand Facets of Maintenance, importance of Maintenance, Various aspects of Inspection	
3	Post Graduate will understand causes of distress in concrete /steel structures	
4	Post Graduate will learn Damage assessment and evaluation models	
5	Post Graduate will learn methods of repair and rehabilitation and will be able to perform Seismic Retrofitting of reinforced concrete buildings.	
Text Books	concrete oundings.	
1	Denison Campbell, Allen and Harold Roper, "Concrete Structures, Ma Maintenance and Repair", Longman Scientific and Technical UK, 199	
2	Allen R.T. & Edwards S.C, Repair of Concrete Structures, Blakie and 1987	
3	Dov Kominetzky.M.S., "Design and Construction Failures", Galgotia Pvt. Ltd., 2001.	
4	Ravishankar.K., Krishnamoorthy.T.S, "Structural Health Monitoring, I Rehabilitation of Concrete Structures", Allied Publishers, 2004.	
5	Diagnosis and treatment of structures in distress by R.N.Raikar, Publis Centre of Structural Designers & Consultants Pvt.Ltd., Mumbai, 1994.	•
6	Handbook on Repair and Rehabilitation of RCC buildings, Published b Delhi, 2002.	by CPWD,
7	Earthquake resistant design of structures by Pankaj Agarwal and Mani Shrikhande, Prentice-Hall of India, 2006.	sh

	а	b	с	d	е	f	g	h	i	j	k
CO1											
CO2		\checkmark	\checkmark				\checkmark	\checkmark	\checkmark		
CO3		\checkmark	\checkmark		\checkmark			\checkmark		\checkmark	

Knowledge Level	CT1	CT2	ТА	ESE
Remember	3	3	1	10
Understand	3	3	2	10
Apply	3	3	2	10
Analyze	2	2	2	10
Evaluate	2	2	2	10
Create	2	2	1	10
Total	15	15	10	60

	а	b	С	d	е	f	g	h	i	j	k
CO1		\checkmark									
CO2											
CO3		\checkmark									

Knowledge Level	CT1	CT2	ТА	ESE
Remember	3	3	1	10
Understand	3	3	2	10
Apply	3	3	2	10
Analyze	2	2	2	10
Evaluate	2	2	2	10
Create	2	2	1	10
Total	15	15	10	60

		t College of Eng First Year M. Tech. Sem		
		7: DYNAMICS OF STI		
Teaching Scheme			Examination Scher	me
Lectures	3 Hrs/Week	-	CT1	15
Tutorial	1 Hr/Week		CT2	15
		-	ESE	60
		Total Credits 3+1=4	ТА	10
Course				
Objectives				
1		should understand the beh		der dynamic loading
2		should model the structure	•	
3		should understand the phy	A	
4	Post Graduate	should understand the desi	ign of earthquake resis	tant structures.
TT T		Course Contents		
Unit I	Single-Degree		Analysis models,	Hours
	-	motion, Free vibration,		(4)
		ponse to harmonic loading		
	motion, Transi	missibility, Vibration isolat	tion.	
Unit II	-	s subjected to periodic an	* *	(5)
	Fourier series			
	introduction to			
TT •/ TTT	aboe .	(5)		
Unit III	SDOF system	(5)		
	Duhamel's In			
	Numerical eva			
	method, Newn	nark Beta Method.		
Unit IV	MDOF System	n, Selection of DOFs, Forr	nulation of Equation	(6)
		acture matrices, Static cond	_	(0)
		en Value problem, Freque		
	-	nination of natural frequen		
	shapes by Stoc			
	conditions, Pro	oportional Damping Matrix	ζ.	
Unit V	Discrete system	ns, Fundamental mode ana	alvsis Ravleigh	(5)
Ollit V		igh-Ritz Method, Dunkerly		(5)
		IDOF systems to dynamic		
	superposition			
		l contributions.	upreu equations or	
Unit VI		rameter Systems, Partial di	ifferential equations	(5)
		e and forced vibrations, Ap		(-)
	flexure.		1	
Tutorial				
	A set of Tuto	orial/ problems based or	n above syllabus is t	to be submitted.
Course Outcomes		will understand the behav		
		will be able to model the s		•
		will be able to understand		
	Post Graduate	will be able to perform the	design of earthquake	resistant structures.
Text Books				
LEXI RAAKS				

2	Structural Dynamics – Roy Craig, John-Wiley & Sons
3	Dynamics of Structures – Theory & Application to Earthquake Engineering- A.K.
	Chopra, Prentice Hall Publications
4	Dynamics of Structures – Mukhopadhyay
5	Structural Dynamics – Mario Paz 6. Elements of Earthquake Engineering by Jaikrishna, A.R. Chandrashekharan, Brijesh Chandra, Standard Publishers Distributors.
Useful Links	
1	nptel.iitk.ac.in/
2	www.myeducationkey.com/
3	

	а	b	С	d	е	f	g	h	i	j	k
CO1											
CO2		\checkmark	\checkmark							\checkmark	
CO3	\checkmark	\checkmark	\checkmark								
CO4		\checkmark	\checkmark							\checkmark	

Knowledge Level	CT1	CT2	ТА	ESE
Remember	3	3	1	10
Understand	3	3	2	10
Apply	3	3	2	10
Analyze	2	2	2	10
Evaluate	2	2	2	10
Create	2	2	1	10
Total	15	15	10	60

Gov	ernment	College of En	gineering F	Karad
		First Year M. Te	0 0	
		SE 106: LAB PRACT		
Laboratory Schen	ne			ation Scheme
	4 Hrs/week		CA	50
			ESE	50
		Total Credits = 2		100
Course Objectives	1			100
v v		should understand the p	hysics of the proble	m
		should be familiar with	÷ .	
		should understand codal		applications
		should learn various sof		
	structures.	should learn various sor	twates in Analysis	and design of
	structures.	Course Contents	,	
		Course Contents)	
Experiment 1		htoin the failure made	for the stragged m	notonial using
Experiment 1		btain the failure mode		naterial using
		nr's circle for given sta		1 1
		higher order stress fun	ction (4th order a	nd above) to find
	diffe	erent states of stress.		
	1			
Experiment 2	a. To i	nvestigate state of stre	ss given by partic	ular stress function.
		levelop stress strain cu		
	Hard	dening of materials	-	
		C		
Experiment 3	a Polyme	er impregnated concrete,	polymer concrete,	application.
		10		11
Experiment 4	a. Ana	lyze a plate by finite d	ifference method	
F		lyze a truss by flexibil		
	0. 7 114	iyze u truss by nexion	ity method	
Experiment 5	<u> </u>	lyze a frame by stiffne	ss method	
Experiment 5		•		of arid by stiffness
		erate input data for so	•	
	meu	hod. Use both the type	of code numberin	ig.
	D'atailan	(1 D		
Experiment 6		ted-Parameter Systems,		
	b. free an	d forced vibrations, App	lication to beams in	i flexure.
T. • • • •	D 1	· 1 D' 1 C	1 (1 . 1 1	· · · 1 1
Experiment 7		eigh-Ritz approach for	deflection calcula	ations in beams and
		mns.		
	b. Ana	lysis of beams curved	in plan and elevat	ion.
Experiment 8	c. Ana	lysis and Design of Over	head water tank- C	Circular with flat
	botto			
	d. Desi	gn of prestress concrete	beams, box, T and	I Sections
Experiment 9	c. Beha	aviour of Fiber reinforce	d concrete under Co	ompression, tensile,
-		are, research findings, ap		-
		sical and chemical prope	-	
		lica fume, properties of a		
		hanical properties and du		
		r-r-r-into and di		
Experiment 10	a. To c	btain octahedral norm	al, shear stress by	hydrostatic stress
		stress deviator tensor	•	-
		write a program for an	-	
List of Sub		while a program for any	one of practical	
List of Submission		fEvnarimente		
	Total number of			
2	Total number of	or sneets		

3	Project/Dissertation Report
4	Seminar report
5	Field Visit Report
Additional Inform	mation
Course Outcome	(CO):
1	Post Graduate will understand the physics of the problem
2	Post Graduate will be familiar with hands on practice.
3	Post Graduate will understand codal provisions and its applications.
4	Post Graduate will learn various softwares in Analysis and design of structures.

	а	b	С	d	е	f	g	h	i	j	k
CO1											
CO2							\checkmark				
CO3							\checkmark				
CO4	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark				\checkmark		\checkmark

Knowledge	CT1	CT2	ТА	ESE
Level				
Remember	3	3	1	10
Understand	3	3	2	10
Apply	3	3	2	10
Analyze	2	2	2	10
Evaluate	2	2	2	10
Create	2	2	1	10
Total	15	15	10	60

Government College of Engineering Karad						
		First Year M. Tech. Semes				
SE201: THEORY OF PLATES & SHELLS						
Teaching Scheme			Examination Scher			
Lectures	3 Hrs/Week		CT1	15		
Tutorial	1Hr /Week	-	CT2	15		
			ESE	60		
9		Total Credits 3+1=4	ТА	10		
Course						
Objectives 1	Post Graduate	should understand analysis	of 2D flat and curved	surfaces		
2		should learn mathematical t				
2	problems.	should four mationation t	coninques for solutio	ns of these		
3		should know numerical me	thod for the analysis	of 2d problems		
4		should understand the behave				
5	Post Graduate	should understand the beha	viour of thick plates			
6	Post Graduate	should understand the geom	etry and strength of s	shell structures.		
		Course Contents				
Unit I		to Plate Theory: Thin and T		Hours		
		ction theory of thin plates-a ture relations, stress resultar		05		
	conditions.	uation for bending of plates	, various boulluary			
Unit II		olates-Navier's solution : S	imply supported	05		
		tes subjected to uniformly d		05		
	varying loads					
		blates, concentrated loads an				
		ples, symmetric & anti-sym	-			
		olates-Levy's solution: Plate				
		ributed and varying loads an				
	-	s between simply supported	-			
		dges simply supported, fixe	d, free, elastically			
Unit III	restrained.	ods: Use of potential energy	principle solution	05		
Unit III		1 01		05		
	-	plates with various boundar	•			
	loadings. Buck	ling of rectangular plates, c	ircular plates.			
Unit IV	Circular Plat	es: Bending of circular plate	s with clamped &	05		
		ted edges, Plate with a centra	-			
		varying loads, conical load	•			
		bads, semicircular plates, ax	isymmetric toated			
	plates.					
Unit V	Introduction	to shells: Classification of s	hells on geometry	05		
		ry, equation of shell surfaces				
		ment relations, compatibility				
	equations.		•			
	Membrane a					
		equilibrium for synclastic sl	nells, solution for			
	shells subject	o self weight, live load.				
			a and in a target of			
	-	equilibrium in rectangular c	-			
	• •	use of Pucher's function, sim				
	insperioone par	aboloids. Elliptic paraboloid	ai shuns, conoids.			
	c. Cylindrical	shells: Equations of equilibr	ium, open shells			
	-		-			
	with parabolic	, circular, elliptical directrix	, simple problems.			

	d. Shells with closed directrix-circular, elliptical-simple problems. Problems on pipes carrying fluid/liquid under pressure, just filled & partly filled
Unit VI	Bending theory of cylindrical shells: Symmetrically loaded 05
	circular cylindrical shell. Derivation of Governing Differential
	Equation, resembling that for beam on elastic foundation,
	beam theory. Finsterwalder's theory: Derivation of governing
	differential equation of 8th order. D.K.J. theory, Donnell's
	equation. Characteristic equation. Schorer's theory: Derivation
	of differential equation.
Tutorial	
	A set of Tutorial/ problems based on above syllabus is
	to be submitted.
Course Outcomes	
1	Post Graduate will understand behaviour of plates and shells.
2	Post Graduate will learn mathematical and numerical
	solution techniques for these problems.
3	Post Graduate will understand the analysis and design of such
	elements in practice.
4	Post Graduate will know the geometry and strength of plate
	and shell structures.
Text Books & Ref	
1.	Theory of plates & shells by Timoshenko & W. Kreiger, McGraw Hill, Pub. Co. Ltd., Delhi, 1985, 2nd Edition.
2.	Design of R. C. shell roofs by G.S. Ramaswamy, CBS Publisher and Distributors, 1s t Edition 2003, Delhi.
3.	Analysis of thin concrete shells by K.Chandrashekhara, Tata McGraw Hi ll Pub. Co. Ltd, Delhi.
4.	Stresses in Plates and Shells by Ansel C. Ugural, McGraw-Hill, Pub., 1999, Int. Edition, New Delhi, India.
Useful Links	1
1	nptel.iitk.ac.in/
2	www.myeducationkey.com/
3	www.wikipedia.Newton.com/

	а	b	С	d	е	f	g	h	i	j	k	
CO1						\checkmark						
CO2	\checkmark		\checkmark	\checkmark								
CO3				\checkmark	\checkmark	\checkmark						
CO4		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	

Knowledge	CT1	CT2	ТА	ESE
Level				
Remember	3	3	1	10
Understand	3	3	2	10
Apply	3	3	2	10
Analyze	2	2	2	10
Evaluate	2	2	2	10
Create	2	2	1	10
Total	15	15	10	60

Government College of Engineering Karad							
	First Year B. Tech. Seme						
	SE202: FINITE ELEMENT						
Teaching Scheme		Examination Scher	ne				
Lectures	3 Hrs/Week	CT1	15				
Tutorial	1 Hr/Week	CT2	15				
		ESE	60				
	Total Credits 3+1=4	ТА	10				
Course	· · · · · · · · · · · · · · · · · · ·						
Objectives							
1	Students should learn the fundamental	s of the finite eleme	nt method for the				
	analysis of engineering problems arisin	ng in solids and stru	ctures				
2	Students should learn how to judge the						
	improve accuracy in an efficient mann						
	variables.						
3	To enable the students to formulate the	e design problems ir	nto FEA				
4	Use commercially available, state-of-t						
	to analyze complex structural systems,		•				
	models and solving nonlinear structura						
	Course Contents	ar anaryses,					
Unit I	Introduction to Finite Element Meth	ad . Principle of	Hours				
Omt I	minimum potential energy. Variationa		05				
	1 01	- - ·	05				
	Galerkin approach, RayleighRitz meth	iod, finite element					
ГТ ¹ / ТТ	procedure.	1 . • • 1	05				
Unit II	1D problems: Discretization, nodes, e	05					
	displacement model, shape function, s						
	polynomials, application to bars with c						
	variable cross sections subjected to ax						
	2D problems: Development of element						
	and nodal load vector for truss, beam a	and plane frame					
	elements. Transformation of matrices,	relevant structural					
	engineering applications.						
	2D elements of triangular and quadrila	iteral shapes for					
	plane stress and plane strain problems.	Pascal's triangle,					
	convergence requirements and compat	ibility conditions,					
	shape functions, boundary conditions,	element aspect					
	ratio, applications to a continuum.	•					
Unit III	3D problems: Development of element	nt stiffness matrix	05				
	and nodal load vector for Tetrahedron.						
	,						
	elements.						
Unit IV	Isoparametric Elements: Shape fund	ction. Natural	06				
	coordinate systems, classification-isop	parametric,					
	subparamelric, superparametric element	nts, 1D & 2D					
	isoparametric elements, Gauss quadrat						
Unit V	Axisymmetric Elements : Developme	-	04				
Ullit v		ent of element	04				
Unit VI	stiffness matrix and nodal load vector	of stifferess	05				
	Plate and Shell Elements : Formation		05				
	matrix for plate bending elements of tr	-					
	quadrilateral shapes, cylindrical thin sl	hell elements.					
Tutorial							
	A set of Tutorial/ problems based of	n above syllabus					
	is to be submitted.						
Course Outcomes							
1	Post Graduate will learn the fundamen	tals of the finite					
	element method for the analysis of eng	gineering problems					

	••••	
	arising in solids and structures	
2	Post Graduate will be able to judge the quality of the	
	numerical solution and improve accuracy in an efficient	
	manner by optimal selection of solution variables.	
3	Post Graduate will be able to formulate the design	
	problems into FEA	
4	Post Graduate will be able to use commercially available,	
	state-of-the-art finite element analysis software to	
	analyze complex structural systems, including	
	interfacing with CAD models and solving nonlinear	
	structural analyses,	
Text Books		
1	The Finite Element Method (fourth edition) vol I & II by O.C. Zienkiewicz & Graw Hill Publication Co. Ltd.	R. L Ta ylor, Tata Mc
2	An introduction to the finite element method by J. N. Reddy, Tata McGraw H	ill Publication Co. Ltd.
3	Concepts & applications of finite element analysis by R. D. Cook, John Wiley	& Sons ltd.
4	Introduction to finite element method by C.S. Desai, CBS Publicati on & Distr	ibutors
5	Programming in finite element metho d by C.S.Krishnamoorthy, Tata McGrav Ltd.	
6	Introduction to finite el ement in engineering by T.R.Chandrupatla and Belegu India.	ndu, Prentice Hall of
Useful Links		
1		
2		
3		

	а	b	С	d	е	f	g	h	i	j	k
CO1											
CO2		\checkmark	\checkmark	\checkmark		\checkmark		\checkmark	\checkmark	\checkmark	
CO3	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark			\checkmark	\checkmark		
CO4	\checkmark	\checkmark	\checkmark	\checkmark				\checkmark		\checkmark	

Knowledge Level	CT1	CT2	ТА	ESE
Remember	3	3	1	10
Understand	3	3	2	10
Apply	3	3	2	10
Analyze	2	2	2	10
Evaluate	2	2	2	10
Create	2	2	1	10
Total	15	15	10	60

		t College of Eng		rad		
		First Year M. Tech. seme				
		EARTHQUAKE ENG				
Teaching Schem			Examination Sche			
Lectures	3 Hrs/Week		CT1	15		
Tutorial	1/Hr/week		CT2	15		
			ESE	60		
0		Total Credits 3+1=4	ТА	10		
Course						
Objectives	1 Dest Creducte	hould understand the hel	aviour of structure up	dan dumannia laadin		
		should understand the beh		ider dynamic loadin		
		should model the structure should understand the phy				
			•	stopt structures		
Course Co		should understand the desi	gii of eartiquake resis			
Unit I		of Earthquakes: Earthquak	za tarminalagu	Hours 05		
Unit I		akes, Measurement of Earth				
	-	iency-magnitude relations				
Unit II		ponse of linear SDOF syst		05		
		y, Strong ground motion, A				
		ncept of earthquake respon				
		um, Construction of design				
Unit III		ponse of linear MDOF sys		05		
	-	cipation factors, Modal con				
	•	ouildings with symmetric a				
	plan, Torsional		, , , , , , , , , , , , , , , , , , ,			
Unit IV		Concept of Earthquake resistant design, Objectives, Ductility,				
		tion factors, Overstrength,				
		esponse spectrum, Lateral				
	Conceptual des	ign, Building configuratio	n.			
Unit V	Lateral load an	alysis, Provisions of IS-18	93 for buildings,	04		
	Base Shear, Ap	plication to Multistorey bu	uildings, Load			
	combinations.					
Unit VI	Detailing of RO	CC and Masonry buildings	, Provisions of IS-	06		
	13920, IS – 432	26				
Tutorial						
	A set of Tuto	rial/ problems based o	n above syllabus is	s to be submitted.		
Course Outcome	es					
	1 Post Graduate	will understand the behavi	iour of structure unde	r dynamic loading		
	2 Post Graduate	will be able to model the s	structure mathematica	lly		
		will be able to understand				
		will be able to perform the				
Text Books						
		uctures - R.W. Clough and J.		l Pub		
		nics - Roy Craig, John-Wiley				
		uctures- Theory & Application	on to Earthquake Engine	eering – A.K.Chopra.		
	Prentice-H; Pub.					
		nics – Madhujit Mukhopadh	yay, Ane's Student Ed	ition, Ane Books		
	India 5 Structurel Dynes	ning Monis De-				
	5 Structural Dynar		ahna AD Chan 1 1	hour Dallast		
	6 Elements of Eart Chandra.Stands	hquake engineering by Jaikri	snna, A.K. Chandrashel	knaran, Brijesh		
		Publishers Practice for Buildings – David	Key, Thomas Telford Pub	lication.		
		ant Design for Engineers & Arch				
	U unquarte reolou					

	а	b	С	d	е	f	g	h	i	j	k
CO1	\checkmark			\checkmark				\checkmark			
CO2	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark		\checkmark		\checkmark	
CO3	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark			
CO4		\checkmark	\checkmark	\checkmark				\checkmark		\checkmark	

Knowledge Level	CT1	CT2	ТА	ESE
Remember	3	3	1	10
Understand	3	3	2	10
Apply	3	3	2	10
Analyze	2	2	2	10
Evaluate	2	2	2	10
Create	2	2	1	10
Total	15	15	10	60

Government College of Engineering Karad							
First Year M. Tech. Semester-II							
SE204: ADVANCED DESIGN OF STEEL STRUCTURES Teaching Scheme Examination Scheme							
Tutorial	1 Hr/Week		CT2	15			
1 utoriur	1 III/ WOOK		ESE	60			
		Total Credits 3+1=4	TA	10			
Course			111	10			
Objectives							
1	Post Graduate	should understand natural	force systems				
2		should develop skill of mo		of force system			
2	using mechani	-	defining and resolution	i or toree system			
3	-	should understand applicat	tion of mechanics to i	ndustry			
4		should understand applicat					
·	machines and s			ingin periorinans			
	und t	Course Contents					
Unit I	Design of Trus	ssed girder bridges and bea	arings. Deck type and	Hours			
		bridges, bracing syste					
	0 1	d elastomeric bearings.	.,				
Unit II		el buildings, load transfe	r mechanism. lateral	05			
		systems, Design of mon					
	•	braced frames, interactin					
		hear walls for seismic/ w					
	systems, frame	d tube structures, braced to	ube structures, tube in	ı			
	tube structures		,				
Unit III		light gauge steel secti	ons, special design	05			
		for compression ele					
		elements, stiffened cor	-				
	-		-				
		elements, design of					
		repetitive loads and temp					
Unit IV	•	s, plastic bending of beams					
	and lower bon	d theorems, uniqueness th	eorem, yield criteria	,			
	analysis and de	esign of fixed and continuc	ous beams.				
Unit V	÷	sis and design of port		e 05			
		analysis and design of					
		es, rectangular and tapered					
		f frames, plastic moment					
	•	eight design, variable					
		Limit States in Steel Desi					
Unit VI		composite sections,		E 05			
		ms, shear connectors, beha					
	-	posite beams, Design of er		, 			
Tutonicl	Design of colli	posite dealiis, Desigli di el	icaseu sieer coruiniis.				
Tutorial		• • •					
		rial/ problems based o	n above syllabus is				
	to be submit	ted.					
Course Outcome							
	Post Graduata	will understand natural for	ce systems				
2		will develop skill of mode					
2			ining and resolution				
3		using mechanics.	mol problems 1 at - 1				
3		will be able to solve indust	inal problems related				
A	to steel structur		n composito				
4	construction.	will perform applications i	n composite				
	construction.						

1.	Design of steel structures-Vol. II by Ramchandran, standard book house delhi
2.	Design of steel structures-A.S. Arya. J.L. Ajamani, Nemchand and brothers.
3	Structural analysis and design of tall buildings by B.S. Taranath. McGrawHill.
4	Steel skeletal Vol. II Plastic behavior and design by J.F.Bekar, M.R. Horne, J. Heyman. ELBS.
5	Plastic methods of structural analysis by Neal B.G.Chapter and Hall.
6	Teaching Resource for Structural Steel Desing-Vol. III by IIT Madras, Anna University Chennai,
	SERC, Madras and Institute for Steel Development and Growth (INSDAG), Kolkatta.
Useful Links	
1	nptel.iitk.ac.in/
2	www.myeducationkey.com/
3	www.bis.org.in

	а	b	С	d	е	f	g	h	i	j	k
CO1											
CO2	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark			\checkmark	\checkmark	\checkmark	
CO3	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark			\checkmark	\checkmark		
CO4	\checkmark	\checkmark	\checkmark	\checkmark				\checkmark		\checkmark	

Knowledge Level	CT1	CT2	ТА	ESE
Remember	3	3	1	10
Understand	3	3	2	10
Apply	3	3	2	10
Analyze	2	2	2	10
Evaluate	2	2	2	10
Create	2	2	1	10
Total	15	15	10	60

Government College of Engineering Karad First Year M. Tech. Semester-II SE215: Elective-II DESIGN OF R.C.C. BRIDGES **Teaching Scheme Examination Scheme** 3 Hrs/Week Lectures CT1 15 1 Hr/Week Tutorial CT2 15 ESE 60 Total Credits 3+1=4 10 TA Course **Objectives** Post Graduate should understand different types of loads related to construction of 1 roads and bridges. Post Graduate should develop skill of modelling and resolution of force system 2 using mechanics. 3 Post Graduate should understand application of structural mechanics for analysis of bridges. Post Graduate should acquire knowledge of behaviour of bridges subjected to 4 different types of situations. **Course Contents** General Basic bridge forms -beam, arch, suspension, various Unit I Hours types of bridges, selection of type of Bridge and economic 06 span length, super structure -philosophy, geometric alignment, drainage, road kurb, wall foundation, pile foundation, open well foundation. Design loads for bridges -dead load, vertical live load, IRC Unit II 05 loading, wind load, longitudinal forces, centrifugal forces, buoyancy, water current forces, thermal forces, deformation and horizontal forces. Unit III Design of R. C. deck slab, beam and slab, T beam, Pigeaud's 06 theory, Courbon's theory, balanced cantilever bridge, box culvert. Unit IV Construction techniques -construction of sub structure footing, 04 piles, cassions, construction of reinforced earth retaining wall and reinforced earth abutments, super structure erection method bridge deck construction, by cantilever method, Inspection maintenance and repair of bridges. Unit V Design of sub structure abutments, Piers, approach slab. 04 Unit VI 05 Bearing and expansion joints forces on bearings Types of bearings, design of unreinforced elastometric bearings, expansion joints. Tutorial A set of Tutorial/ problems based on above syllabus is to be submitted. **Course Outcomes** Post Graduate will understand different types of loads related to construction of 1 roads and bridges. Post Graduate will be able to develop skill of modelling and resolution of force 2 system using mechanics. Post Graduate will apply structural mechanics for analysis of bridges. 3 4 Post Graduate will acquire knowledge of behaviour of bridges subjected to different types of situations. **Text Books** Concrete Bridge Practice by Dr. V.K. Raina Tata McGraw Hill Pub. Co. 1 2 Reinforced Concrete Structures Vol II by Dr. B. C. Punmia, Ashok Kumar Jain, Anil Kumar Jain -Laxmi Publications, 1992, 7th Edition.

Essential of bridge Eng. By D Johnson Victor, Oxford & IBH Publishing Co. Pvt. Ltd.

3

4	Concrete bridge design R. E. Rowe, John Willey & sons, 1963, 1st Edition.
5	Design of bridge structure by Jagadesh T. R. Jayram M A Prentice Hall of India Pvt. Ltd.
6	Advanced Reinforced Concrete Design, by N KrishnaRaju, CBS Publication & distributors, 2000, 1st Edition.
Useful Links	
1	nptel.iitk.ac.in/
2	www.myeducationkey.com/
3	www.wikipedia.Newton.com/

	а	b	С	d	е	f	g	h	i	j	k
CO1				\checkmark							
CO2		\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	
CO3		\checkmark									
CO4		\checkmark	\checkmark								

Knowledge Level	CT1	CT2	ТА	ESE	
Remember	3	3	1	10	
Understand	3	3	2	10	
Apply	3	3	2	10	
Analyze	2	2	2	10	
Evaluate	2	2	2	10	
Create	2	2	1	10	
Total	15	15	10	60	

Go	vernmen	t College of Eng	gineering Ka	arad			
		First Year M. Tech. Sem					
		lective-II STABILITY O					
Teaching Scheme			Examination Sch	eme			
Lectures	3 Hrs/Week		CT1	15			
Tutorial	1 Hr/Week		CT2	15			
			ESE	60			
		Total Credits 3+1=4	ТА	10			
Course							
Objectives							
1	Post Graduate	should understand concept	of structural stabilit	у.			
2	Post Graduate	should understand causes	of buckling and struc	tural instability.			
3	Post Graduate	should be able to use nume	erical techniques like	e finite difference			
	method, and en	nergy methods for the analy	ysis of beams and co	lumns.			
4	Post Graduate	should learn methods for f	inding the buckling l	oads for thin plates			
	subjected to in						
		Course Contents					
Unit I		bility: stable, unstable and		Hours			
		for stability and method of		06 05			
Unit II		Elastic buckling of columns, uniform and varying section					
		e Difference method, Rayle	eigh–Ritz method.	06			
Unit III		Buckling of continuous beams					
		ames, neutral equilibrium r					
	approach, and	moment Distribution meth	od.				
Unit IV	Torsional buck	ling of columns, pure tors	ion of open sections,	04			
		re buckling of symmetric a					
	columns (hing		·				
Unit V	Lateral bucklin	ng of beams, thin rectangul	ar and I sections,	04			
	pure bending.	-					
Unit VI	Buckling of th	in plate subjected to in plan	ne edge forces,	05			
	governing equ	ation, finite difference met	hod.				
Tutorial							
	A set of Tuto	orial/ problems based o	n above syllabus i	is to be submitted.			
		•	·				
Course Outcomes							
1	Post Graduate	will understand concept of	structural stability.				
2		will understand causes of t	Į	al instability.			
3		will be able to use numeric					
		thods for the analysis of be		,			
4		will use numerical techniq		uckling loads for thin			
		d to in-plane loading		-			
Text Books							
1	Theory of Elas	tic Stability, S. Timoshenk	too and J.N. Gere, 7t	h Impression edition,			
	McGraw-Hill	Book Co., New York, 1961	l.	_			
2	·	tructural Stability Theory,	Alexander Chajes, 7	th edition, Prentice			
	Hall						
		on, March 1974.					
3		tic Stability: Analysis and	Sensitivity, Luis A.	Godoy, 1st edition,			
	CRC Publicati	on, 1999.					
Useful Links	T						
1	nptel.iitk.ac.in						
2	www.myeducat	-					
3	www.wikipedi	a.Newton.com/					

	а	b	С	d	е	f	g	h	i	j	k
CO1											
CO2	\checkmark										
CO3	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
CO4	\checkmark	\checkmark	\checkmark	\checkmark			\checkmark	\checkmark			

Knowledge Level	CT1	CT2	ТА	ESE
Remember	3	3	1	10
Understand	3	3	2	10
Apply	3	3	2	10
Analyze	2	2	2	10
Evaluate	2	2	2	10
Create	2	2	1	10
Total	15	15	10	60

Go		t College of Eng		rad
SE'		First Year M. Tech. Seme I DESIGN OF FOLDED		
SE.	255: Elective-I	I DESIGN OF FOLDED	PLATES AND SHE	LLS
Teaching Scheme			Examination Sche	me
Lectures	3 Hrs/Week		CT1	15
Tutorial	1 Hr/Week		CT2	15
			ESE	60
		Total Credits 3+1=4	ТА	10
Course				
Objectives				
1		should understand concept	of folded plates and s	hells with forces
	acting on it.			
2		should understand analysis	0	plates
3		should understand analysis	e	
4		should be able to use com	mercial softwares for a	inalysis and design
	of folded plate			
	01 11 1 0 1	Course Contents		
Unit I	Shells and fold	led plates Behaviour, Different forms,	footone correntine	Hours
		06		
	selection of sh	folded plates, Advantages	and Disadvantages	
	of shell roofs.	Tolucu plates, Auvallages	and Disauvantages	
Unit II	Analysis and I	05		
	theory.	05		
Unit III		Design of cylindrical shells	by beam Theory	06
	i mary sis and i	esign of eymaneur shens	og ocum meory.	
Unit IV	Shells of Doub	le curvature-Analysis and	Design by membrane	04
		s of revolution.	Design by memorane	04
Unit V		s of revolution.	e curvature Analysis	04
Chit V	and Design by	•	ie eurvature. 7 marysis	04
	Theory.	memorane		
Unit VI		led Plates – iteration metho	od and Simpsons	05
	method.		F	
Tutorial				
	A set of Tuto	orial/ problems based o	n above svllabus is	to be submitted
		indi problems bused o	ii ubove synubus is	to be submitted.
Course Outcomes				
<u> </u>	Post Graduate	will understand concept of	folded plates and shel	ls with forces acting
-	on it.		Toraca praces and site	
2		will understand analysis ar	nd design of folded pla	ites
3		will understand analysis ar	<u> </u>	
4		will be able to use commen		lysis and design of
	folded plates a			
Text Books	·			
1	Design and Co	onstruction of Concrete S	hell Roofs- G.S.Rama	aswami CBS
	Publishers.			
2	Analysis of T	nin Concrete Shells- K.Cl	nandrashekhara. TMc	GH
3		esign of Concrete Shells-		
4	IS 2204-1962		~	
5	IS 2210-1962			
Useful Links	•			
1	nptel.iitk.ac.in	/		
2	www.myeducat			
3	www.wikinedi	a.Newton.com/		

	а	b	С	d	е	f	g	h	i	j	k
CO1				\checkmark							
CO2											
CO3	\checkmark	\checkmark	\checkmark		\checkmark						
CO4			\checkmark					\checkmark			

Knowledge Level	CT1	CT2	ТА	ESE
Remember	3	3	1	10
Understand	3	3	2	10
Apply	3	3	2	10
Analyze	2	2	2	10
Evaluate	2	2	2	10
Create	2	2	1	10
Total	15	15	10	60

Go	vernment	t College of E	ngineering	g Karad				
		First Year M. Tech. So		5				
		SE 206: LABPRAC						
Laboratory Schen			Exar	nination Scher	ne			
Practical	4 Hrs/week		CA		50			
			ESE		50			
		Total Credits = 2			100			
Course Objectives		1 11 1 . 1.1	1 1 0.1	1.1				
1		should understand the						
2		should be familiar wi	A					
3		should understand coo						
4		should learn various s	oftwares in Analy	vsis and design	of			
	structures.	Course Courton	•-					
		Course Conten	ts					
Experiment 1	o Dot	ermination of deflect	ione verious for	oos in a S.S. r	octongular			
Experiment 1		e subjected to u.d.l. u			ectaligulai			
		ermination of deflect						
		angular plate subject						
		angunar piate subject		•				
Experiment 2	a. Det	ermination of deflect	ion of a clampe	d plate using	[evv's			
		hod.	ion of a clamped		Levys			
			ermination of fo	orces in a sph	erical			
		b. Practical example on determination of forces in a spherical shell.						
		1.						
Experiment 3	a. Wo	rking problem on det	ermination of fo	orces in a cyli	ndrical			
Experimento		l using membrane th		nees in a cyn	liuricui			
		te a program for Gau		nethod of solv	ving			
		ultaneous equations.			1118			
		anancous equations.						
Experiment 4	c. Ana	lyze a plate by finite	difference meth	nod				
		lyze a truss by flexib						
Experiment 5	a. Dev	elop finite element for	mulation for a 8 n	oded plane str	ess element			
•		ly any one FEM based						
	matl	hematical modeling						
Experiment 6		ly element library avai						
		elop assembly subrout	ine of program fo	r analysis of ar	ny			
	cont	inuum structure.						
Experiment 7		ic analysis and design						
	b Desig	n of composite beams	Design of encase	ed steel colum	18.			
Fun eniment 0		an of D C das 1 - 1 - 1 - 1	norm or d al-1. Th	h a a ma la mi d				
Experiment 8		gn of R. C. deck slab, by sis of balanced cantil		÷				
	U. Allal	ysis of balanced cantil	ever bridge, box (
Experiment 9	a. Des	ign of sub structure ab	utments Piers					
Experiment 3								
Experiment 10	a. Late	eral load analysis, Prov	isions of IS-1803	for buildings	Base Shear			
Experiment IU		lication to Multistorey			Lust Siltal			
List of Submissio		sector to triditionology						
1	Total number of	of Experiments						
2	Total number of	-						
3	Project/Dissert	ation Report						
4	Seminar report	<u> </u>						

5	Field Visit Report						
Additional Information							
Course Outcome(CO):							
1	Post Graduate will understand the physics of the problem						
2	Post Graduate will be familiar with hands on practice.						
3	Post Graduate will understand codal provisions and its applications.						
4	Post Graduate will learn various softwares in Analysis and design of structures.						

	а	b	С	d	е	f	g	h	i	j	k
CO1											\checkmark
CO2			\checkmark								\checkmark
CO3		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark
CO4				\checkmark							\checkmark

Knowledge	CT1	CT2	ТА	ESE
Level				
Remember	3	3	1	10
Understand	3	3	2	10
Apply	3	3	2	10
Analyze	2	2	2	10
Evaluate	2	2	2	10
Create	2	2	1	10
Total	15	15	10	60

Go	vernmen	t College of Eng	pineering]	Karad					
		First Year M. Tech. Sem	0						
		SE 207: Seminar-l							
Laboratory Scher	ne		Examin	ation Scheme					
Practical	2 Hrs/week		CA	50					
			ESE	00					
		Total Credits = 1	Total	50					
Course Objectiv									
1		should know the state of the	ne art in the releva	ant subjects of					
	structural engi								
2		Post graduate should know the experimental procedure to validate theories							
	related to structural engineering.								
3	Post graduate	should learn how to prepar	re and present res	earch project.					
		Course Contents							
1		e delivered by the students							
		be evaluated by three men		headed by HOD					
	wherein guide	should be one of the mem	ibers.						
List of Submission									
1		t duly signed by respective	e guide and head o	of department					
Additional Infor									
Course Outcome	<u> </u>								
1	U U	will know the state of the	art in the relevant	subjects of structural					
	engineering.								
2		will know the experimenta	al procedure to va	lidate theories related					
	to structural er								
3	Doct graduate	will be able to prepare and	I	• .					

	a	b	с	d	e	f	g	h	i	j	k
CO1											
CO2											
CO3	\checkmark	\checkmark									
CO4											

Knowledge Level	CT1	CT2	CA/TA	ESE
Remember			09	
Understand			09	
Apply			08	
Analyze			08	
Evaluate			08	
Create			08	
Total			50	

			t College of Eng cond Year M. Tech. Seme	U							
		Sec	SE 301: Seminar-II	SUT-111							
Laboratory S	cho	ma	SE 501. Sellinai-II	Fyamina	tion Scheme						
Practical	che	2 Hrs/week		CA	50						
Fractical		2 1115/ WCCK		ESE	00						
			Total Credits = 1	Total	50						
Course Objec	tive	2S		Iotui	50						
	1		hould know the state of the	e art in the relevant	subjects of						
	-	structural engin			~~·j···~						
	2		hould know the experimen	tal procedure to va	lidate theories						
			elated to structural engineering.								
	3	Post graduate s	Post graduate should be able to conduct extensive literature survey in subjects of								
		structural engineering.									
	4 Post graduate should learn how to prepare and present research project.										
			Course Contents								
	1		be delivered by the students								
			be evaluated by three mem		aded by HOD						
		wherein guide	should be one of the memb	ers.							
List of Submi	ssio										
	1	^	duly signed by respective	guide and head of o	department						
Additional In											
Course Outco											
	1	U	should know the state of the	e art in the relevant	subjects of						
		structural engin									
	2		hould know the experimen	tal procedure to va	lidate theories						
	-		tural engineering.								
	3	U U	hould be able to conduct ex-	xtensive literature s	survey in subjects of						
		structural engin		1	1 .						
	4	Post graduate s	should learn how to prepare	e and present resear	ch project.						

	a	b	с	d	e	f	g	h	i	j	k
CO1				\checkmark	\checkmark						
CO2				\checkmark	\checkmark						
CO3			\checkmark	\checkmark	\checkmark						
CO4											

Knowledge Level	CT1	CT2	CA/TA	ESE
Remember			09	
Understand			09	
Apply			08	
Analyze			08	
Evaluate			08	
Create			08	
Total			50	

G	overnm	ent College of Eng	gineering Ka	rad					
		Second Year M. Tech. Sen	0 0						
		SE 302: DISSERTATION	PHASE-I						
Laboratory Sc	heme		Examinatio	n Scheme					
Practical	20		TA/CA	100					
	Hrs/week								
		Total Credits =10	Total 100						
Course Outcon	nes								
]		tudents will be able to identify structural engineering problems reviewing vailable literature.							
	a anaono m		ate techniques to analy	ze complex					
_		Students will be able to identify appropriate techniques to analyze complex structural systems.							
		l demonstrate application of e	ngineering and manage	ement principles					
-		ficient handling of project	0 0 0						
	6	Course Contents							
]	based on 2: by three mo one of the	Dissertation (Phase-I): Student has to submit the report and deliver the seminar based on 25% or more work on Dissertation topic. It is to be evaluated internally by three members panel of examiners headed by HOD wherein guide should be one of the members of the panel. Last date of submission of report shall be two weeks before the end of semester.							
List of Submis									
]		n report of phase-I duly signed	l by respective guide a	nd head of					
	department								

	a	b	с	d	e	f	g	h	i	j	k
CO1	\checkmark	\checkmark									\checkmark
CO2	\checkmark	\checkmark				\checkmark	\checkmark	\checkmark		\checkmark	
CO3	\checkmark										
CO4		\checkmark	\checkmark					\checkmark			

Knowledge Level	CT1	CT2	CA/TA	ESE
Remember			18	
Understand			17	
Apply			16	
Analyze			17	
Evaluate			16	
Create			16	
Total			100	

Ge	overnment	College of Eng	ineering Kar	ad			
Second Year M. Tech. Semester-IV SE401: DISSERTATION PHASE-II							
Practical	30 Hrs/week		TA/CA	100			
			ESE	200			
		Total Credits =10	Total	300			
Course Objectiv	ves						
1	Students will b	e able to apply appropriate	techniques and tools t	o solve complex			
	structural	structural					
2	Students will e	Students will exhibit good communication skill to the engineering community					
	and society.						
3							
4	Student will show contribution in efficient technology transfer to the society						
	-	Course Contents					
1		hase-II): Internal assessme					
		be carried out by the guide for 100 marks. The external assessment of					
		dissertation work is to be carried out by panel of examiners consisting of internal					
	(guide) and external examiner for 200 marks. Candidate shall present the entire						
	work on Dissertation, followed by viva-voce.						
	Last date of submission of dissertation will be the end of the semester. Please see						
	Appendix- C of Rules & Regulation For Further information.						
T · 4 60 1 · ·							
List of Submissi			11 .1 11	11 1 0			
		eport of phase-II duly signe	a by respective guide	and head of			
	department						
Additional Information Course Outcome(CO):							
Course Outcom							

	а	b	с	d	e	f	g	h	i	j	k
CO1											
CO2		\checkmark			\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	
CO3		\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
CO4		\checkmark									

Knowledge Level	CT1	CT2	CA/TA	ESE
Remember			18	36
Understand			17	34
Apply			16	32
Analyze			17	34
Evaluate			16	32
Create			16	32
Total			100	200