			Government College	e of Enginee	ring, Kara	ıd			
			Final Year (Sem – VII)						
		CE 2711: (O	pen Elective- IV) Adva	nced Comp	uting for (Civil Engineering	3		
Tea	ching S	cheme				Examination Scl	heme		
Lect	tures	3 Hrs/week				CT – 1	15		
Tuto	orials	-				CT – 2	15		
Tota	l Credit	s 3				ТА	10		
						ESE	60		
						Duration of ESE	02 Hrs	30 M	lin
		comes (CO)							
		be able to							
		<u> </u>	or a program to serve a put	rpose					
		program							
3.	utilize t	he program to serve		e Contents				Her	
Uni		mouting Fundam		e Contents				Hou	
Uni	Lo Gi	•	s, Nesting, Operators, Bin acktracking, Tree, BFS	U U			•	(0)	1)
Uni		ogramming Funda						(0'	7)
	Sy an Ja	vstem, Graph Algori d LLP va: Class Hierarchy	ditionals, Iterations and E thm, Divide and Conquer, y, Inheritance and Overric	Abstract Data ling, Polymor	a Types, Dy phism, Clo	namic Flow, Netwo	ork Flow		
		ckages, Concurrent	Programming, Exception	Handling, Ger	neric and ca	ll backs.		(12	
Uni	In wi (B M	Introduction, Frequency Distribution, Measures of Central Tendency and Dispersion, Association with 2 variables, Principle of Counting and Factorial, Permutations and Combinations, Probability (Basic, Conditional), Random Variables (Discrete, Continuous, Poisson and Binomial) (Single and Multiple) and its applications, Mass and Density Functions, Expectation and Variance, Estimation and Inference, Hypothesis Testing							
Uni	t 4 Da Re No	atabase Manageme elational Model, Qu ormal Forms, Trans		xing, Storage	manageme			(0	6)
Uni	t 5 M M Ad	odern Application ultiple Forms, Bac ccess without login		lation, Access nework, Web	s Control Server, Cli	ent-Server Comm	unication	(0	6)
Uni	t 6 Aj <u>Ge</u> M <u>Ci</u>	pplications eneral: Payment (anagement, Robust	Gateway and Accountin and Lean Systems, Cloud <u>cific</u> : PM, BIM, ERP, etc	g, Communi	cation and	•		(04	4)
1	t Books							<u> </u>	
1.	<u> </u>	•	G. Venkatesh and Mahade	evan Mukund	(2020)				
2.		•	owney (O'Reilly, 2015)						
3.	Fundar	nentals of Database	Management System - Mu	ukeshNegi 20	19				
Refe	erence I								
1.			eldon Ross (3rd Edition -						
2.			atterns for Developing Rea	act Apps - Ale	x Banks, Ev	ve Porcello 2020			
Usef	ful Link								
1.	using J	ava (<u>www.onlinede</u>			0		0	once	pts
2.	(<u>https:/</u>	/nptel.ac.in/courses/	pplication Development	-			Tanmay	Go	•
3.	Course (<u>https:/</u>		DevOps and professional-certificates/d	Software evops-and-sof	Engineeri		al Ce	rtific	ate

$PO \rightarrow$	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 6	PO 8	PO 9	PO 10	PO 11	PO 12	PSO	PSO
CO↓													1	2
CO 1	2	3	3	2	2	1	-	-	-	-	-	-	2	2
CO 2	2	3	3	2	2	1	-	-	-	-	-	-	2	2
CO 3	2	3	3	2	2	1	-	-	-	-	-	-	2	2

Knowledge Level	CT 1	CT 2	ТА	ESE
Remember	3	3	4	12
Understand	3	3	4	12
Apply	3	3	6	12
Analyse	3	3	-	12
Evaluate	3	3	-	12
Create	-	-	-	-
TOTAL	15	15	10	60

Government College of Engineering, Karad										
		I	Final Year (S	em – VII) B	B. Tech. Civ	vil Enginee	ering			
		CE2721	: (Open Elec	tive- IV) Da	ata Science	for Civil l	Engineering			
Teachin	g Sche	me					Examination Sch	eme		
Lectures		3 Hrs/week					CT – 1	15		
Tutorial	5	-					CT – 2	15		
Total Cr	edits	3					ТА	10		
							ESE	60		
							Duration of ESE	02 Hrs	30 Min	
Course	Outcon	nes (CO)								
Students										
1. mak	e use o	f Database Mana	agement Syster	ms (DBMS)						
		lachine Learning								
		Train Artificial								
	5		<u> </u>		Contents				Hours	
Unit 1	Intro	duction Data Sc	ience. ML and			hv. Caution	in ML		(04)	
	Basics Tools (Scikit Learn Library for ML in Python) and Coding Logic - Iterators, Filters,									
		· ·		•	•	0	ix, Backtracking, B			
	DFS		8,			····· , · · · · · ·	,			
Unit 2		ed Mathematic	s						(06)	
				Square Reg	ression, Eig	en Values	and Vectors, Syr	nmetric		
		ces, Single Valu								
		ed Statistics	1	, I	1	J				
			n, Permutation	ns and Combin	nations, Prol	oability, Ra	ndom Variables, (D	Discrete,		
							lications, Expectat			
		nce, Hypothesis		, C	I /	11	· I			
Unit 3										
	-		onstrained Op	timization, C	onvex Sets,	Functions,	Lagrange Multipli	ers and		
							, Polynomial Reg			
	•	al Paths, ant col			•			,		
		ithms	5 1	, 1	,					
			bace, DF, BF,	Heuristic, St	tochastic loc	al, Search	Systems, Populatio	n-based		
							s, Escaping Local			
		Plan, Algorithn	•	2				•		
Unit 4	Mach	ine Learning M	Iodels						(05)	
				gression, Mode	els of Classif	fication (Ne	arest Neighbours).	Support		
	Vecto	r Machines, Dec	cision Tree, En	semble Metho	ods, Random	Forests, M	odel Selection and	Tuning,		
	Hieran	rchical Clusterir	ng, Time Serie	es Modelling	and Forecas	ting, Regre	ssion (Path Variabl	es) and		
	Mode	l-Based Diagnos	stics, Anomaly	Detection, La	arge Scale M	L.				
Unit 5		cial Intelligence							(05)	
							Clustering, Reinfor	cement		
		•				v .	pervised Learning			
							Backward Chaining			
				and Arc Con	sistency, Pa	ttern Direc	ted and Forward C	haining		
		erence and Rete	Algorithm.							
Unit 6		cations							(04)	
		-	•			•	ain Dependent, Dec			
			nder System,	Photo OCR,	Natural La	nguage Pro	cessing, Learning	System		
	Design <u>Civil Engineering Specific</u> : Satellite Image Processing, Geo-Informatics, Hydrological Analysis,									
				-	-		• •	nalysis,		
	Ŭ	n and Modelling	g, Survey, Intra	astructure and	Keal Estate	Warket Stu	ules		<u> </u>	
Text Bo				· ··	1			1	<u> </u>	
			•				lienGeron - 2017)			
		tatistics for Data	a Scientists - P	Peter C. Bruce	, Andrew Br	uce, Peter C	Gedeck 2017		T	
Referen										
		ntelligence (3rd								
2. Ne	aral Net	works and Deep	Learning - Ch	naru C. Agraw	val 2018					

Use	ful Links									
1.	IITM Data	a Scie	ence BSc	Course – S	tatistics,	Machine Lear	rning l	Foundatior	n, Database Mana	gement System,
	(www.onli	nedeg	ree.iitm.a	<u>c.in</u>)						
2.	NPTEL	-	Data	Science	for	Engineers	by	Prof.	Raghunathan	Rengaswamy
	(https://npt	tel.ac.i	in/courses	<u>s/106/106/106</u>	<u>5106179/</u>)			-	
3.	Coursera - Introduction to Data Science Specialization (https://www.coursera.org/specializations/introduction-									
	data-science	<u>ce</u>)			-		-			

$PO \rightarrow$	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 6	PO 8	PO 9	PO 10	PO 11	PO 12	PSO	PSO
CO↓													1	2
CO 1	2	3	3	2	2	1	-	-	-	-	-	-	2	2
CO 2	2	3	3	2	2	1	-	-	-	-	-	-	2	2
CO 3	2	3	3	2	2	1	-	-	-	-	-	-	2	2

Knowledge Level	CT 1	CT 2	TA	ESE
Remember	3	3	4	12
Understand	3	3	4	12
Apply	3	3	6	12
Analyse	3	3	-	12
Evaluate	3	3	-	12
Create	-	-	-	-
TOTAL	15	15	10	60

Government College of Engineering, Karad Final Year (Sem – VII) B. Tech. Civil Engineering										
					<u> </u>	<u> </u>				
			CE2/12: (Elec	tive III) Remote	Sensing and	GIS				
Toochir	a Saha	m 0	1			Examination Sch	0000			
Teachin Lectures		3 Hrs/week				CT – 1	15			
Tutorial		J IIIS/ WEEK				CT - 1 CT - 2	15			
Total C		3				TA TA	10			
1 otur er	cuits	5				ESE	60			
						Duration of ESE	02 Hrs 1	30 Min		
Course	Outcon	nes (CO)								
Student										
1. und	erstand	and interpret the	e satellite data							
	nonstrate	e GIS Compone	nts and technique	s.						
3. app	ly GIS t	ools over Satell	ite data to derive v	various products						
	-									
				Course Conten				Hours		
Unit 1		0				Basics of Remote S	0	(06)		
		1	· 1		0	R spectrum, energy				
						eractions with earth ectral, radiometric,				
			oral resolution of s		and orbits, sp	ecual, faulometric,	spatial			
Unit 2					ng remote sensi	ng, Bidirectional Re	flection	(08)		
01111 2				t of DN, DN to Ra			neetion	(00)		
						Topography, Radio	ometric.			
				perty and Field of			,			
Unit 3						etching filtering tech	nniques,	(08)		
						nages, synergetic				
			analysis, Band An	rithmetic, Ratio in	ages, Vegetatio	on indices (NDVI), I	Infrared			
		, NDWI, NDSI								
						Clustering techniqu				
				ng Data , Super	vised Classifie	rs, Accuracy Asse	ssment,			
Unit 4			appa Coefficient.	Components of C	TIS types of y	ector data and con	cont of	(08)		
Unit 4	-	-	-	-		odel and compariso	-	(00)		
						ression techniques,				
		1	· · · ·	21	1	-referencing, Differe	1			
		•	terpolation techni	÷ .	,	6,	1			
Unit 5					nd different typ	pes of resolutions,	Quality	(06)		
	assess	ment of freely	available DEMS	S, GIS analysis:	Overlaying Op	erations, Buffer An	nalysis.,			
	Classi	fication Method	ls, Errors in GIS a	nd Key elements of	of maps, Limitat	ions of GIS				
Unit 6			0			Disaster- landslides		(06)		
						plications in Cryo				
	-		applications in	Urban planning,	applications in	Watershed Mana	gement,			
Text Bo		oir silting.								
		sand and P W	Kiefer 'Remote S	ensing and Image	Interpretation'	John Wiley & Sons	Now V	ork 6th		
	ition, 20		Kieler, Kenlote S	clising and image	interpretation,	John whey & John	5, INCW I	ork. our		
			Geographic Info	rmation Systems",	McGraw-Hill F	Education 2006				
						Systems", Oxford	Universit	y Press.		
20	•		,	1 01		,	•	,		
Referen	nce Boo	ks								
						lition, CRC Press, B				
		nd Yeung, Albe	ert K.W., Concep	ts and Techniques	of Geographic	Information System	ns Prentic	ce Hall,		
20	02.									
						1				
Useful			T.C							
				tems by Prof. Arur	n K. Sarat, II'I' F	Coorkee				
<u>htt</u>	ps://onli	necourses.nptel	.ac.in/noc20_ce20	/preview						

2.	Remote Sensing and GIS by Dr. Rishikesh Bharti, IIT Guwahati
	https://nptel.ac.in/courses/105/103/105103193/
3.	Basics of Remote sensing, GIS & GNSS technology and their applications by Dr. Poonam S. Tiwari Indian
	Institute Of Remote Sensing
	https://onlinecourses.swayam2.ac.in/aic20_ge05/preview

$PO \rightarrow$	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO	PSO
CO↓													1	2
CO 1	1	1	2	1	1	-	-	-	-	-	-	1	1	1
CO 2	2	1	2	1	2	-	-	-	-	-	-	1	2	1
CO 3	1	2	3	1	3	1	-	-	-	-	-	1	1	1

Knowledge Level	CT 1	CT 2	TA	ESE
Remember	5	2	2	10
Understand	5	5	2	15
Apply	5	5	2	15
Analyse	-	3	2	15
Evaluate	-	-	2	5
Create	-	-	-	-
TOTAL	15	15	10	60

Government College of Engineering, Karad										
			Final Year (Sem – V							
			CE2722: (Elective]	III) Water P	ower Engineering					
		Scheme			Examination Scheme					
Lect			3 Hrs/week		CT – 1	15				
	orials		-		CT – 2	15				
Tota	l Credi	ts	3		ТА	10				
					ESE	60				
					Duration of ESE	02 Hrs 30 Min				
-	Course Outcomes (CO)									
		ts will be able								
1.			and calculate firm power and s		er from power duration cu	irve.				
2.			mental effects of hydropower							
3. determine economical diameter of penstocks, workout thoma coefficient in cavitation of turbine.										
4.			in the course to analyse simil	lar systems, w	hich will acknowledge stu	idents to work tog	ether in a			
	proje	ct related to the	e course content.							
				ourse Conten			Hours			
Ur	Unit 1Water Power: Introduction Sources of Energy, Role of Hydropower in a plant system, Estimation(0									
		of water pow	•	1.0.1						
Ur	nit 2		ad on Hydro Turbines : Loa				(05)			
T.			tor, load Duration Curve, Firm				(00)			
UI	nit 3		Iro power plant : classification				(08)			
	General Arrangements of Run of River Plants, Valley Dam plants, Diversion Canal Plants, High Head diversion plants, Storage and pondage, Pumped storage power plants, Advantages of Pumped									
	storage power plants, Types of Pumped storage power plants, Advantages of Fumped									
Ur	nit 4		General classification, design			blocks Conduit	(05)			
	пі т		s and manifolds.	enteria, Leon	ionnear diameter, rinenor	bioeks, Conduit	(05)			
Ur	nit 5		troduction, main types of turb	oines. Reversit	ble type of turbines. Hydra	ulics of turbines.	(07)			
			angles and nomenclature, Ba							
			el testing, characteristics of tu			· · · · · · · · · · · · · · · · · · ·				
Ur	nit 6		mer and Surges: Introduction			by turbine, Load	(07)			
		acceptance a	nd rejection, Resonance in P	enstocks, Cha	annel Surges, Surge tanks	s, types of surge				
		tank, design c	criteria for surge tank.							
		Intakes: types	s losses, Air entertainment, Int	el aeration, Ca	anals, Forebay, Tunnel.					
Text	t Book	S								
1.	Dande	kar and Sharma	a, "Water Power Engineering"	' ,Vikas Pub. I	House Pvt. Ltd.					
2.	Bhatta	charya P. K., "	Water Power Engineering", K	Khanna Public	ations, New Delhi					
3.	Deshm	ukh M. M. "W	ater Power Engineering", Dh	anapatrai and	Sons N. Delhi					
	erence									
1.	Creage	er and Justin, "I	Hydro – Electric Hand Book"							
2.	Brown	G., "Hydro-el	ectric Engineering Practice",	Vol. I to III						
3. Mosonvi, "Water Power Development"										
			ie E. B.; Hydraulic Transient;		· ·					
			plied Hydraulic Transients; Va							
			na T.K.; A Text book of Wate	er Power Engi	neering, S. Chand Publicat	ion, 2003				
	ful Lin									
	· · · · ·	A	<u>ses/112/107/112107291</u> IIT F		Ravi Kumar					
2. http://nptel.ac.in/courses/105/105/105105110 IIT Kharagpur										

$PO \rightarrow$	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO	PSO
CO↓													1	2
CO 1	3	2	-	2	2	-	-	-	-	1	1	-	1	2
CO 2	3	2	2	2	2	2	1	1	1	2	1	1	2	1
CO 3	3	2	2	2	3	3	1	1	1	1	1	1	1	2
CO 4	3	3	2	3	2	2	3	2	2	2	2	1	2	2

Knowledge Level	CT 1	CT 2	TA	ESE
Remember	3	3	2	12
Understand	3	3	2	12
Apply	3	3	2	12
Analyse	3	3	2	12
Evaluate	3	3	2	12
Create	-	-	-	-
TOTAL	15	15	10	60

Government College of Engineering, Karad Final Year (Sem – VII) B. Tech. Civil Engineering CE2732: (Elective III) Ground Improvement Technique

		CE	2732: (Elective III)	Ground Improvement	Technique		
Teachin	g Sche	me			Examinatio	n Scheme	
Lectures	<u> </u>	3 Hrs/week			CT – 1	15	
Tutorial		J III S/ WEEK			CT = 1 CT = 2	15	
		3				10	
Total Cr	edits	3			TA		
					ESE	60	<u> </u>
-	_				Duration of	ESE 02 Hrs	30 Min
Course Students		nes (CO)					
				1:			
				ound improvement techniq	ue		
				provement techniques			
3. sele	ct and a	inalyse site spec		vement and its design			
				Course Contents			Hours
Unit 1			nt Mechanical Modi				(05)
				ctives of soil improvement			
	impro	vement techniq	ues, Factors to be c	onsidered in the selection	of the best soil	improvement	
	techni	ique.	-			_	
			ation: Type of mech	anical modification, Aim	of modification	, compaction,	
			tion for various types				
Unit 2		A	watering Technique				(08)
ome 2				nd compressible deposits,	Natural on land	off-shore and	(00)
				n on various soil propertie			
		-	-			-	
	-			ods - Seepage analysis for	two-dimensional	now-runy and	
TT 1/ 0			slots in homogenous d	leposits.			(10)
Unit 3		u treatments m			X 7 1 01 . 1	a 1 1	(10)
				mpaction and consolidati			
	-		0	and fabric drains, Granu		-	
		•	-	ad transfer mechanism, roc		•	
	soil, a	unchors in cohes	sive soil, Rock bolt,	types, action of rock bolt,	Soil nailing, anal	lysis of nailed	
	soil						
Unit 4	Soil S	tabilization:					(05)
	Lime	stabilization -	suitability, process, s	special effects, criteria for	lime stabilization	n. Criteria for	
	cemer	nt stabilization.	Stabilization using Fl	y ash, Electro osmosis, Soi	l freezing		
Unit 5		h Reinforceme	Ţ.		0		(07)
	Conce	ept of reinforce	ement - Types of rei	nforcement material - Ap	plications of rei	nforced earth-	
		-		ation, drainage and separati	•		
				terials used. Types of g			
		cations of grout		teriuis used. Types of g	Grouting, Groutin	ig procedure.	
	Shote	Ų					
Unit 6			nd Field Observation				(00)
Unito			nd Field Observation		and of stability		(08)
			• •	s,Causes of failures,Purp	-	-	
			ures ,Procedure ,Ca		Hill side slope		
				ility of slopes, Cuts in san			
				lopes, Observation studi	es during const	ruction ,Post	
	constr	ruction, piezome	eters, Settlement plate	s, Inclinometer			
Text Bo							
1. Pur	ushoth	ama Raj. P, Gro	und Improvement Te	chniques, Lakshmi Publica	tions, 2nd Edition	, 2012.	
2. Nił	narRanj	anPatra, Ground	l Improvement Techn	iques, Vikas Publishing Ho	ouse, First Edition	n, 2012.	
	V. Rao	and G. V. S. Ra	o, Text Book On Eng	ineering with Geotextiles,	Tata McGraw Hi	ll, Third Editior	n 2016
Referen							
			ion and Geotechnical	Methods in Foundation En	gineering". McG	raw-Hill, 1994.	
				Techniques", Tata McGrav			v Delhi
199			in the second se				
		M.P., Ground In	provement Blockie	Academic and Professional	Chapman and Ha	all, Glassgow 1	993.
				g, Thomson, Indian Edition	A	,, ,	
				viples and Practices, Prentic		vt.Ltd New De	lhi
201		,			mun or munu l		,
201							

Use	ful Links
1.	Ground Improvement Technique- Prof. G. L. Sivakumar Babu https://nptel.ac.in/courses/105/108/105108075/

2. Ground Improvement,- Prof. Dilip Kumar Badiya <u>https://nptel.ac.in/courses/105/105/105105210/</u>

Mapping of COs and POs

Г

$PO \rightarrow$	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 6	PO 8	PO 9	PO 10	PO 11	PO 12	PSO	PSO
CO↓													1	2
CO 1	2	-	1	-	-	-	1	-	-	-	-	1	1	2
CO 2	3	3	1	2	-	2	1	1	-	2	-	1	1	2
CO 3	3	3	3	3	2	2	1	1	-	2	-	1	1	2

Knowledge Level	CT 1	CT 2	TA	ESE
Remember	2	2	-	8
Understand	5	5	3	20
Apply	3	3	2	12
Analyse	3	3	3	12
Evaluate	2	2	2	8
Create	-	-	-	-
TOTAL	15	15	10	60

Government College of Engineering, Karad Final Year (Sem – VII) B. Tech Civil Engineering **CE2742 : (Elective III) Industrial Waste Treatment Teaching Scheme Examination Scheme** Lectures 03 Hrs/week CT - 115 Total Credits 03 CT - 215 TA 10 ESE 60 **Duration of ESE** 02 Hrs 30 Min **Course Outcomes (CO)** Students will be able to **1.** understand and apply concepts of industrial wastewater treatment. 2. analyse and evaluate the industrial wastewater and common effluent treatment systems 3. design the industrial wastewater treatment facilities Hours **Course Contents** Introduction: Classification of industries, general water requirements in industry, industrial water (04) Unit 1 reuse, cooling tower make up water, water and salt balances in cooling tower, Common water quality problems in cooling water tower systems, estimation of blow down water composition, analysis of scaling potential by Langlier and Ryzner indexes Waste minimization techniques: waste audit, concept of waste minimization, techniques of volume Unit 2 (05) and strength reduction, Equalization: process, flow and quality, location, volume requirement, design considerations, reuse and recycling concepts, process description, objectives, and methods of neutralization and proportioning Unit 3 Industrial Wastewater Treatment for Agro based industries: Manufacturing processes, water (10)usage, sources, quantities, and characteristics of effluents (process stream and combined), pollution effects, waste reduction / reclamation / by-product recovery, utilization, alternative methods of treatment, and disposal for i) Agro-based industries: Sugar, Distillery, Dairy, Pulp and paper mill, Textile Unit 4 Industrial Wastewater Treatment for Chemical and Engineering Industries: Manufacturing (10)processes, water usage, sources, quantities, and characteristics of effluents (process stream and combined), pollution effects, waste reduction / reclamation / by-product recovery, utilization, alternative methods of treatment, and disposal for 1. Chemical industries: Pharmaceutical, Petroleum and refineries, Fertilizer and Tannery 2. Engineering industries: Steel, Electroplating, Foundries, Sponge iron unit, Alumina/aluminum manufacturing unit, Copper smelter Thermal power plants 3. Common Effluent Treatment Plant: concept, objectives, methodology, cost benefit analysis, Unit 5 (03)design, operation and maintenance Unit 6 Industrial Project Report: Project report preparation for waste treatment and disposal system of (04) industries, Pre-feasibility, feasibility and detailed project reports, project financial appraisal. **Text Books** Rao M. N. and Datta, "Waste Water Treatment", Oxford & IBH Publication, 1st Edition, 1992. 1. Masters, G. M. "Introduction to Environmental Engineering and Science", Pearson Education, 2004. 2. **Reference Books** Nelson Nemerow, "Theories and Practices of Industrial Waste Treatment", Wiley Publication Company, 1st 1. Edition, 1971. Eckenfelder, W. W., "Industrial Water Pollution Control", McGraw-Hill, 2000. 2. Nemerow, N. L and Dasgupta, A., "Industrial and Hazardous Waste Treatment", Van Nostrand Reinhold (New 3. York), 1988. "IS Standards for Treatment and Disposal of Various Industries". 4. **Useful Links** NPTEL Course - Civil Engineering - Wastewater Management - By Prof. M. M. Ghangrekar, IIT Kharagpur -1. https://nptel.ac.in/courses/105/105/105105048/ NPTEL Course - Civil Engineering - Wastewater Treatment and Recycling - By Prof. Manoj Kumar Tiwari, IIT 2.

Kharagpur – https://nptel.ac.in/courses/105/105/105105178/

$PO \rightarrow$	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 6	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2
CO↓														
CO 1	3	1	1	1	1	2	3	1	-	2	-	1	3	3
CO 2	1	2	1	1	1	2	3	1	-	2	-	1	3	3
CO 3	1	1	3	2	2	2	3	1	1	-	-	1	3	3
		1: Slight (Low)		.ow)	2:	Modera	erate (Medium) 3: Substantial (High)			ligh)				

Knowledge Level	CT 1	CT 2	TA	ESE
Remember	05	-	02	12
Understand	05	05	02	12
Apply	05	05	02	12
Analyse	-	05	02	12
Evaluate	-	-	02	12
Create	-	-	-	-
TOTAL	15	15	10	60

Final Vear (Sem – VID B. Tech. Civil Engineering CE2752; (Elective III) Analysis of Indeterminate Structure Teaching Scheme Examination Scheme Lectures 3Hrs/weck CT – 1 15 Totorials - CT – 2 15 Total Credits 3 TA 10 Course Outcomes (CO) Duration of ESE 03 Hrs Student with be able to - - 10 1. remember and understand laws and principles related to structures and systems under loading. - 2. apply methods to solve problems in structural analysis. - - 3. calculate and draw response of structures under different loading conditions. - - 4. predict behaviour of structures and make necessary inferences required for design. (07) 1. tamethod. Statically indeterminate hean, runs: (Log or of SL ≤ 2). (07) Unit 3 Displacement Method: - - (07) 1. biop deflection method. Modified slope deflection equation application to beams, sinking of support, beam with different. flexural rigidity (07) Unit 4 <th></th> <th colspan="12">Government College of Engineering, Karad</th>		Government College of Engineering, Karad											
Teaching Scheme Examination Scheme Lectures 3Hrs/weck CT - 1 15 Tutorials - CT - 2 15 Total Credits 3 TA 10 Course Outcomes (CO) Duration of ESE 03 Hrs Student will be able to 1 Temember and understand laws and principles related to structures and systems under loading. 2 apply methods to solve problems in structural analysis. Course Outcomes (CO) 1 Formember and understand laws and principles related to structures and systems under loading. 4 apply methods to solve problems in structural analysis. Course Contents 1000 1000 Unit 1 Energy Theorems- Bettie's Law, Maxwell's reciprocal theorem, Castiglione's theorem and unit to add method. Statically indeterminate hean, trusk (tack of fit and temperature variation effect), two hinged parabolic arch with supports at same level (Degree of S.I. < 2).						,		<u> </u>					
Iectures 3Hrs/week CT - 1 15 Tutorials - CT - 2 15 Total Credits 3 TA 10 Course Outcomes (CO) Duration of ESE 03 Hrs Student will be able to - - - 1. remember and understand laws and principles related to structures and systems under loading. - - 2. apply methods to solve problems in structural analysis. - - - 3. calculate able to - - - - 4. predict behaviour of structures and make necessary inferences required for design. - - - - Vinit 1 Energy Theorems- Bettie's Law, Maxwell's reciprocal theorem, Castigtione's theorem and unit 1 -				CE27	52: (Elective	III) Analysis o	of Indeterminate	e Structure					
Iectures 3Hrs/week CT - 1 15 Tutorials CT - 2 15 Toal Credits 3 TA 10 Course Outcomes (CO) Duration of ESE 03 Hrs Student will be able to Image: Course of the able to and draw response of structures under different loading conditions. Image: Course of the able to and the able to anothed. Statically indeterminate beam, trust (able of fit and the able to the able to anothed. Statically indeterminate beam, the able to able to anothed. Statically indeterminate beam, the able to anothed. Statically indeterminate the able to anothed. Statically indeterminate beam, the able to anothed. Statically indeterminate the able to anothed. Statically indeterminate beam, the able to anothed. Statically indeterminate able to anothed the able to anoth													
Tutorials - 15 Total Credits 3 IA 10 ESE 60 Duration of ESE 0.3 Hrs Course Outcomes (CO) Student will be able to I Temember and understand laws and principles related to structures and systems under loading. I Temember and understand laws and principles related to structures and systems under loading. I Immember and understand laws and principles related to structures and systems under loading. I Immember and understand laws and principles related to structures and systems under loading. Immember and understand laws and principles related to structures and systems under different loading conditions. Immember and understand laws and principles related to structures and systems under loading. Immember and understand laws and principles related to structures and systems under loading. Immember and understand laws and principles related to structures and systems under loading. Immember and understand laws and principles related to structures and systems under loading. Immember and understand laws and principles related to structures and systems under loading. Immember and understand laws and principles related to structures and systems under loading. Immember and understand laws and principles related to structures and systems under loading. Immember and understand laws and principles related to structures and systems under loading. Immember and understand laws and principles related to structures and systems and systems. <			Schen										
Total Credits 3 TA 10 ESE 60 Duration of ESE 03 Hrs Course Outcomes (CO) Student will be able to Duration of ESE 03 Hrs 2. apply methods to solve problems in structural analysis. 3 Course Outcomes (CO) 2. apply methods to solve problems in structural analysis. 3 Course Contents 10 1 Encergy Theorems- Bettie's Law, Maxwell's reciprocal theorem, Castiglione's theorem and unit load method. Statically indeterminate beam, trusk (lack of fit and temperature variation effect), two hinged parabolic arch with supports at same level.(Degree of S.I. ≤ 2). 100 100 Vinit 2 Displacement Method: 000000000000000000000000000000000000				3Hrs/week									
ESE 60 Student vill be able to 0.3 Hrs 1. remember and understand laws and principles related to structures and systems under loading. 0.3 Hrs 2. apply methods to solve problems in structural analysis. 3. 3. calculate and draw response of structures under different loading conditions. 4. 4. predict behaviour of structures and make necessary inferences required for design. 1000000000000000000000000000000000000			1:40	-									
Duration of ESE 03 Hrs Course Outcomes (CO) Student will be able to 3 1. remember and understand laws and principles related to structures and systems under loading. 2 apply methods to solve problems in structural analysis. 3 calculate and draw response of structures under different loading conditions. 4 4. predict behaviour of structures and make necessary inferences required for design. 1000000000000000000000000000000000000	Tota	ll Cred	nts	3									
Course Outcomes (CO) Student will be able to Student will be able to 1. remember and understand laws and principles related to structures and systems under loading. 2. apply methods to solve problems in structural analysis. 3. calculate and draw response of structures under different loading conditions. 4. predict behaviour of structures and make necessary inferences required for design. Unit 1 Energy Theorems- Bettic's Law, Maxwell's reciprocal theorem, Castiglione's theorem and unit load method. Statically indeterminate beam, truss (lack of fit and temperature variation effect), two lininged parabolic arch with supports at same level.(Degree of S.I. ≤ 2). Unit 2 Displacement Method: Slope deflection method, Modified slope deflection equation application to beams, sinking of supports, portal frames without sway and with sway. (07) Unit 3 Displacement Method: (07) Matrix Methods: (07) Ferkibility coefficients, development of three moments in continuous beam, sinking of support, heam with different. flexural rigidity (07) Unit 6 Introduction to plastic analysis of steel structures, shape factor, plastic section modulus, upper and lower bound theorems, Plastic analysis of beams (06) Text Books Image and shape and plastic analysis of beams (06) 1 Introduction t													
Student will be able to 1. remember and understand laws and principles related to structures and systems under loading. 2. apply methods to solve problems in structural analysis. 3. calculate and draw response of structures under different loading conditions. 4. predict behaviour of structures and make necessary inferences required for design. 1 Energy Theorems- Bettie's Law, Maxwell's reciprocal theorem, Castiglione's theorem and unit long due thod. Statically indeterminate beam, truss (lack of ft and temperature variation effect), two hinged parabolic arch with supports at same level.(Degree of S.I. ≤ 2). (06) Vinit 3 Displacement Method: (06) Subjed cellection method, Modified slope deflection equation application to beams, sinking of supports, portal frames without sway and with sway. (07) Vinit 3 Displacement Method: (07) Moment distribution method; application to beam, sinking of supports, portal frames without sway and with sway and with sway. (07) Vinit 4 Force method: Clapeyeron's theorem of three moments in continuous beams and portals, Stiffness coefficients, development of stiffness matrix, analysis of beams and portals, Stiffness coefficients, development of stiffness matrix, analysis of beams and portals, Stiffness coefficients, development of stiffness matrix, analysis of beams and portals, Stiffness coefficients, development of stiffness matrix, analysis of beams and portals, Nethol lower bound thcoren	Соц	rse O	utcom					Duration of LSE	051115				
I. remember and understand laws and principles related to structures and systems under loading. 2. apply methods to solve problems in structural analysis. 3. calculate and draw response of structures under different loading conditions. 4. predict behaviour of structures and make necessary inferences required for design. Course Contents Hourse Contents Hourset formorethod: <td col<="" td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td>	<td></td>												
2. apply methods to solve problems in structural analysis. 3. calculate and draw response of structures under different loading conditions. 4. predict behaviour of structures and make necessary inferences required for design. Course Contents Unit 1 Indext of structures and make necessary inferences required for design. Unit 2 Displacement Method: Solge deflection method, Modified slope deflection equation application to beams, sinking of supports, portal frames without sway, with sway. (07) Unit 3 Displacement Method: (07) Moment distribution method: application to beam, sinking of supports, portal frames without sway and with sway (07) Vinit 4 Force method: Clapeyeron's theorem of three moments in continuous beam, sinking of support, ecotificients, development of flexibility matrix, analysis of beams and portals, Stiffness coefficients, development of flexibility matrix, analysis of beams and portals, Stiffness coefficients, development of structures, shape factor, plastic section modulus, upper and lower bound theorems, Plastic analysis of beams (06) 1 BasicStructural Analysis: C.S.Reddy,3 ^m Edition, 2014 Tata McGraw Hill Publishing House, New Delhi. (06) 2 Structural Analysis: C.S.Reddy,3 ^m Editon, 2014 Tata McGraw Hill Publishing House, New Delhi. (06) 3 Theory of S					ws and princi	ples related to str	uctures and syster	ns under loading.					
3. calculate and traw response of structures under different loading conditions. 4. predict behaviour of structures and make necessary inferences required for design. Course Contents Hours Unit 1 Energy Theorems- Bettie's Law, Maxwell's reciprocal theorem, Castiglione's theorem and unit (07) hinged parabolic arch with supports at same level.(Degree of S.I. ≤ 2). (06) Unit 2 Displacement Method: Slope deflection equation application to beams, sinking of supports, portal frames without sway, with sway. (07) Unit 3 Displacement Method: Modified slope deflection equation application to beams, sinking of supports, portal frames without sway and with sway (07) Unit 4 Force method: Clapeyeron's theorem of three moments in continuous beam, sinking of support, beam with different. flexural rigidity (07) Vinit 5 Matrix Methods: Revelopment of flexibility matrix, analysis of beams and portals, Stiffness coefficients, development of stiffness matrix, analysis of beams and portals (Degree of S.I. < 2)					· · · ·	•	y	0					
Course Contents Hours Unit 1 Energy Theorems- Bettie's Law, Maxwell's reciprocal theorem, Castiglione's theorem and unit load method. Statically indeterminate beam, truss (lack of fit and temperature variation effect), two hinged parabolic arch with supports at same level.(Degree of S.I. ≤ 2). (07) Unit 2 Displacement Method: Slope deflection method, Modified slope deflection equation application to beams, sinking of supports, portal frames without sway, with sway. (06) Unit 3 Displacement Method: Moment distribution method: application to beam, sinking of supports, portal frames without sway and with sway and with sway. (07) Unit 4 Force method: Clapeyeron's theorem of three moments in continuous beam, sinking of support, beam with different. flexural rigidity (07) Vinit 5 Matrix Methods: Coefficients, development of flexibility matrix, analysis of beams and portals (Degree of S.I. < 2)							ading conditions.						
Unit 1 Energy Theorems- Bettie's Law, Maxwell's reciprocal theorem, Castiglione's theorem and unit load method. Statically indeterminate beam, truss (lack of fit and temperature variation effect), two hinged parabolic arch with supports at same level.(Degree of S.I. ≤ 2). (07) Unit 2 Displacement Method: Slope deflection method, Modified slope deflection equation application to beams, sinking of supports, portal frames without sway, with sway. (06) Unit 3 Displacement Method: Moment distribution method: application to beam, sinking of supports, portal frames without sway and with sway (07) Unit 4 Force method: Clapeyeron's theorem of three moments in continuous beam, sinking of support, beam with different. flexural rigidity (07) Unit 5 Matrix Methods: Flexibility coefficients, development of flexibility matrix, analysis of beams and portals, Stiffness coefficients, development of stiffness matrix, analysis of beams and portals (Degree of S.I. < 2)								esign.					
Image: Instructure in the image in the image. The image is the image in the i						Course Co	ntents			Hours			
Image parabolic arch with supports at same level.(Degree of S.I. ≤ 2). (06) Unit 2 Displacement Method: Supports, portal frames without sway, with sway. (06) Unit 3 Displacement Method: Moment distribution method: application to beam, sinking of supports, portal frames without sway and with sway (07) Unit 4 Force method: Clapeyeron's theorem of three moments in continuous beam, sinking of support, beam with different. flexural rigidity (07) Unit 5 Matrix Methods: Flexibility coefficients, development of flexibility matrix, analysis of beams and portals, Stiffness coefficients, development of stiffness matrix, analysis of beams and portals (Degree of S.I. < 2)	Uni		0	•	· · · ·	-	,	0		(07)			
Unit 2 Displacement Method: Slope deflection method, Modified slope deflection equation application to beams, sinking of supports, portal frames without sway, with sway. (06) Unit 3 Displacement Method: Moment distribution method: application to beam, sinking of supports, portal frames without sway and with sway (07) Unit 4 Force method: Clapeyeron's theorem of three moments in continuous beam, sinking of support, beam with different. flexural rigidity (07) Unit 5 Matrix Methods: Flexibility coefficients, development of flexibility matrix, analysis of beams and portals, Stiffness coefficients, development of stiffness matrix, analysis of beams and portals (Degree of S.L < 2)								erature variation effe	ect), two				
 Displacement Method: Slope deflection method, Modified slope deflection equation application to beams, sinking of supports, portal frames without sway, with sway. Unit 3 Displacement Method: Moment distribution method: application to beam, sinking of supports, portal frames without sway and with sway Unit 4 Force method: Clapeyeron's theorem of three moments in continuous beam, sinking of support, beam with different. flexural rigidity Unit 5 Matrix Methods: Flexibility coefficients, development of flexibility matrix, analysis of beams and portals, Stiffness coefficients, development of flexibility matrix, analysis of beams and portals, Stiffness coefficients, development of stiffness matrix, analysis of beams and portals, Degree of S.I. < 2) Unit 6 Introduction to plastic analysis of steel structures, shape factor, plastic section modulus, upper and lower bound theorems, Plastic analysis of beams Text Books I BasicStructural Analysis: C.S.Reddy,3rd Edition, 2014 Tata McGraw Hill Publishing House, New Delhi. Structural Analysis: L. S. Negi and R.S. Jangid, Tata McGraw Hill Publishing House, New Delhi. Structural Analysis: L. S. Negi and R.S. Jangid, Tata McGraw Hills Publishing House, New Delhi. Timoshenko S. P. and Young D. H., (1965),Theory of Structures (2NDed),: New York :Tata McGraw Hill, New Delhi. Norris, C.H., J.B. Wilbur & Utku S. (1948),Elementary Structural Analysis(1sted) , New York: TataMcGraw Hill, New Delhi. Wang C.K.(2014), Indeterminate Structural Analysis, Narosa Publishing house, ISBN – 8173197504. Menon D.(2009),Advanced Structural Analysis, Narosa Publishing house, ISBN – 8173197504. Menon D.(2009),Advanced Structural Analysis, Marosa Publishing house, ISBN – 8173197504. Muthu K. U., Azmi I & Janadharm M.(2011),Basic Structureal Analysis: I. K International Publishing House Pvt.Ltd. <			hingeo	d parabolic arch	with supports	at same level.(De	egree of S.I. ≤ 2).			(0.6)			
supports, portal frames without sway, with sway. (07) Unit 3 Displacement Method: Moment distribution method: application to beam, sinking of supports, portal frames without sway and with sway (07) Unit 4 Force method: Clapeyeron's theorem of three moments in continuous beam, sinking of support, beam with different. flexural rigidity (07) Unit 5 Matrix Methods: Flexibility coefficients, development of flexibility matrix, analysis of beams and portals (Degree of S.I. < 2)	Uni	t 2	Displa	acement Method	:					(06)			
Unit 3 Displacement Method: (07) Moment distribution method: application to beam, sinking of supports, portal frames without sway and with sway (07) Unit 4 Force method: Clapeyeron's theorem of three moments in continuous beam, sinking of support, beam with different, flexural rigidity (07) Unit 5 Matrix Methods: (07) Flexibility coefficients, development of flexibility matrix, analysis of beams and portals, Stiffness coefficients, development of stiffness matrix, analysis of beams and portals (Degree of S.I. < 2)		1											
Displacement Method: Moment distribution method: application to beam, sinking of supports, portal frames without sway unit 4 Force method: Clapeyeron's theorem of three moments in continuous beam, sinking of support, beam with different. flexural rigidity (07) Flexibility coefficients, development of flexibility matrix, analysis of beams and portals, Stiffness coefficients, development of stiffness matrix, analysis of beams and portals (Degree of S.I. < 2)			supp	ports, portal fran	es without sw	ay, with sway.							
and with sway (07) Unit 4 Force method: Clapeyeron's theorem of three moments in continuous beam, sinking of support, beam with different. flexural rigidity (07) Unit 5 Matrix Methods: (07) Flexibility coefficients, development of flexibility matrix, analysis of beams and portals, Stiffness coefficients, development of stiffness matrix, analysis of beams and portals (Degree of S.I. < 2)	Uni	it 3	Displa	acement Method	:					(07)			
and with sway (07) Unit 4 Force method: Clapeyeron's theorem of three moments in continuous beam, sinking of support, beam with different. flexural rigidity (07) Unit 5 Matrix Methods: (07) Flexibility coefficients, development of flexibility matrix, analysis of beams and portals, Stiffness coefficients, development of stiffness matrix, analysis of beams and portals (Degree of S.I. < 2)		Moment distribution method: application to beam sinking of supports portal frames without sway											
Unit 4 Force method: Clapeyeron's theorem of three moments in continuous beam, sinking of support, beam with different. flexural rigidity (07) Unit 5 Matrix Methods: Flexibility coefficients, development of flexibility matrix, analysis of beams and portals (Degree of S.I. < 2)					appire		and go support	, portar inantos (114	io ar siraj				
Unit 5 Matrix Methods: Flexibility coefficients, development of flexibility matrix, analysis of beams and portals, Stiffness coefficients, development of stiffness matrix, analysis of beams and portals (Degree of S.I. < 2)	Uni				veron's theore	m of three mom	ents in continuou	s beam, sinking of	support,	(07)			
 Matrix Methods: Flexibility coefficients, development of flexibility matrix, analysis of beams and portals, Stiffness coefficients, development of stiffness matrix, analysis of beams and portals (Degree of S.I. < 2) Unit 6 Introduction to plastic analysis of steel structures, shape factor, plastic section modulus, upper and lower bound theorems, Plastic analysis of beams Text Books 1 BasicStructuralAnalysis: C.S.Reddy,3rd Edition, 2014 Tata McGraw Hill Publishing House, New Delhi. Structural Analysis: L. S. Negi and R.S. Jangid, Tata Mc-Graw Hill Publishing House, New Delhi. Theory of Structures, by Dr. S. K. Hirde ,DrManojHedaoo, Techmax Publication. Reference Books 1 Timoshenko S. P. and Young D. H., (1965),Theory of Structures (2NDed),: New York: Tata McGraw Hill, New Delhi. Norris, C.H., J.B. Wilbur &Utku S. (1948),Elementary Structural Analysis(1sted) , New York: TataMcGraw Hill, New Delhi. Wang C.K.(2014) ,Indeterminate Structural Analysis, New York: Tata McGraw Hill, New Delhi, New Delhi. Wang C.K.(2014) ,Indeterminate Structural Analysis, New York: Tata McGraw Hill, New Delhi, ISBN – 007068135X Menon D.(2009),Advanced Structural Analysis, Narosa Publishing house, ISBN – 8173197504. Menon D.(2009),Advanced Structural Analysis, Narosa Publishing house, ISBN – 1842654977. Muthu K. U., Azmi I &Janadharn M.(2011),Basic Structureal Analysis: I. K International Publishing House Pvt.Ltd. Pandit& Gupta(2005), Structural Analysis of structures, Waveland press, ISBN-1577661435 . JunnarkarS, B.&Shah H.J.(2015),Mechanics of Structures, Vol-III, Z^{4b}ed) :Charotar Publishers. Vazirani and Ratwani(2002),Analysis of Structures: Vol. I II, Khanna Publishers, ISBN – 8174092056 Vazirani and Ratwani(2002),Analysis of Structures: Vol. I II, Khanna Publishers, ISBN – 8174092056 <td></td><td></td><td colspan="10">beam with different. flexural rigidity</td>			beam with different. flexural rigidity										
Flexibility coefficients, development of flexibility matrix, analysis of beams and portals, Stiffness coefficients, development of stiffness matrix, analysis of beams and portals (Degree of S.I. < 2)	Uni	it 5	Matri	x Methods:						(07)			
coefficients, development of stiffness matrix, analysis of beams and portals (Degree of S.I. < 2)					s developmen	nt of flexibility n	natrix analysis of	beams and portals	Stiffness				
Unit 6 Introduction to plastic analysis of steel structures, shape factor, plastic section modulus, upper and lower bound theorems, Plastic analysis of beams (06) Text Books				•		•	•						
Text Books 1. BasicStructuralAnalysis: C.S.Reddy,3 rd Edition, 2014 Tata McGraw Hill Publishing House, New Delhi. 2. Structural Analysis: L. S. Negi and R.S. Jangid, Tata Mc-Graw Hills Publishing House, New Delhi 3. Theory of Structures, by Dr. S. K. Hirde ,DrManojHedaoo, Techmax Publication. Reference Books	Uni									(06)			
 BasicStructuralAnalysis: C.S.Reddy,3rd Edition, 2014 Tata McGraw Hill Publishing House, New Delhi. Structural Analysis: L. S. Negi and R.S. Jangid, Tata Mc-Graw Hills Publishing House, New Delhi Theory of Structures, by Dr. S. K. Hirde ,DrManojHedaoo, Techmax Publication. Reference Books Timoshenko S. P. and Young D. H., (1965),Theory of Structures (2NDed),: New York: Tata McGraw Hill, New Delhi. Norris, C.H., J.B. Wilbur &Utku S. (1948),Elementary Structural Analysis(1sted) , New York: TataMcGraw Hill, New Delhi. Wang C.K. (2014) ,Indeterminate Structural Analysis, New York: Tata McGraw Hill, New Delhi. Wang C.K. (2014) ,Indeterminate Structural Analysis, New York: Tata McGraw Hill, New Delhi, ISBN – 007068135X Menon D. (2008),Structural Analysis, New Delhi :Narosa Publishing house, ISBN – 8173197504. Menon D. (2009),Advanced Structural Analysis, Narosa Publishing house, ISBN – 1842654977. Muthu K. U., Azmi I &Janadharn M.(2011),Basic Structural Analysis: I. K International Publishing House Pvt.Ltd. Pandit& Gupta(2005), Structural Analysis - Matrix approach, (2NDed), McGraw Hillpublications, Gere & Weaver(1994), Matrix analysis of structures, Waveland press, ISBN-1577661435 . JunnarkarS. B.&Shah H.J.(2015),Mechanics of Structures (Vol-II)(24thed) : Charotar Publishers. Vazirani and Ratwani(2002),Analysis of Structures: Vol. I II, Khanna Publishers,ISBN – 8174092056 Useful Links Prof. Devdas Menon http://www.nptelvideos.in/2012/11/advanced-structural-analysis.html. 			lower	bound theorems	, Plastic analy	sis of beams			• •				
 Structural Analysis: L. S. Negi and R.S. Jangid, Tata Mc-Graw Hills Publishing House, New Delhi Theory of Structures, by Dr. S. K. Hirde ,DrManojHedaoo, Techmax Publication. Reference Books Timoshenko S. P. and Young D. H., (1965),Theory of Structures (2NDed),: New York :Tata McGraw Hill, New Delhi. Norris, C.H., J.B. Wilbur &Utku S. (1948),Elementary Structural Analysis(1sted) , New York: TataMcGraw Hill, New Delhi. Wang C.K.(2014) ,Indeterminate Structural Analysis, New York: Tata McGraw Hill, New Delhi. Wang C.K.(2014) ,Indeterminate Structural Analysis, New York: Tata McGraw Hill, New Delhi. Menon D. (2008),Structural Analysis, New Delhi :Narosa Publishing house, ISBN – 8173197504. Menon D. (2009),Advanced Structural Analysis, Narosa Publishing house, ISBN – 1842654977. Muthu K. U., Azmi I &Janadharn M.(2011),Basic Structural Analysis:. I. K International Publishing House Pvt.Ltd. Pandit& Gupta(2005), Structural Analysis of structures, Waveland press, ISBN-1577661435 . JunnarkarS. B.&Shah H.J.(2015),Mechanics of Structures(Vol-II)(24thed) :Charotar Publishers. Vazirani and Ratwani(2002),Analysis of Structures: Vol. I II, Khanna Publishers,ISBN – 8174092056 Useful Links Prof. Devdas Menon http://www.nptelvideos.in/2012/11/advanced-structural-analysis.html. 	Text												
 Theory of Structures, by Dr. S. K. Hirde ,DrManojHedaoo, Techmax Publication. Reference Books Timoshenko S. P. and Young D. H., (1965),Theory of Structures (2NDed),: New York :Tata McGraw Hill, New Delhi. Norris, C.H., J.B. Wilbur &Utku S. (1948),Elementary Structural Analysis(1sted), New York: TataMcGraw Hill, New Delhi. Wang C.K.(2014) ,Indeterminate Structural Analysis, New York: Tata McGraw Hill, New Delhi. Wang C.K.(2014) ,Indeterminate Structural Analysis, New York: Tata McGraw Hill, New Delhi. Menon D.(2008),Structural Analysis, New Delhi :Narosa Publishing house, ISBN – 8173197504. Menon D.(2009),Advanced Structural Analysis, Narosa Publishing house, ISBN – 1842654977. Muthu K. U., Azmi I &Janadharn M.(2011),Basic Structural Analysis:. I. K International Publishing House Pvt.Ltd. Pandit& Gupta(2005), Structural Analysis - Matrix approach, (2NDed), McGraw Hillpublications, Gere & Weaver(1994), Matrix analysis of structures, Waveland press, ISBN-1577661435 . JunnarkarS. B.&Shah H.J.(2015),Mechanics of Structures(Vol-II)(24thed) :Charotar Publishers. Vazirani and Ratwani(2002),Analysis of Structures: Vol. I II, Khanna Publishers,ISBN – 8174092056 Useful Links Prof. Devdas Menon http://www.nptelvideos.in/2012/11/advanced-structural-analysis.html. 				2		,		U					
 Reference Books 1. Timoshenko S. P. and Young D. H., (1965), Theory of Structures (2NDed),: New York :Tata McGraw Hill, New Delhi. 2 Norris, C.H., J.B. Wilbur & Utku S. (1948), Elementary Structural Analysis(1sted), New York: TataMcGraw Hill, New Delhi. 3. Wang C.K.(2014), Indeterminate Structural Analysis, New York: Tata McGraw Hill, New Delhi, ISBN – 007068135X 4. Menon D. (2008), Structural Analysis, New Delhi :Narosa Publishing house, ISBN – 8173197504. 5. Menon D. (2009), Advanced Structural Analysis, Narosa Publishing house, ISBN – 1842654977. 6. Muthu K. U., Azmi I & Janadharn M.(2011), Basic Structural Analysis:. I. K International Publishing House Pvt.Ltd. 7. Pandit& Gupta(2005), Structural Analysis - Matrix approach, (2NDed), McGraw Hillpublications, 8. Gere & Weaver(1994), Matrix analysis of structures, Waveland press, ISBN-1577661435. 9. JunnarkarS. B.&Shah H.J.(2015), Mechanics of Structures (Vol-III)(24thed) :Charotar Publishers. 10. Vazirani and Ratwani(2002), Analysis of Structures: Vol. I II, Khanna Publishers, ISBN – 8174092056 Useful Links 1. Prof. Devdas Menon http://www.nptelvideos.in/2012/11/advanced-structural-analysis.html. 				7	0	0		0	elhi				
 Timoshenko S. P. and Young D. H., (1965), Theory of Structures (2NDed),: New York :Tata McGraw Hill, New Delhi. Norris, C.H., J.B. Wilbur &Utku S. (1948), Elementary Structural Analysis(1sted), New York: TataMcGraw Hill, New Delhi. Wang C.K.(2014), Indeterminate Structural Analysis, New York: Tata McGraw Hill, New Delhi, ISBN – 007068135X Menon D. (2008), Structural Analysis, New Delhi :Narosa Publishing house, ISBN – 8173197504. Menon D. (2009), Advanced Structural Analysis, Narosa Publishing house, ISBN – 1842654977. Muthu K. U., Azmi I & Janadharn M.(2011), Basic Structural Analysis:. I. K International Publishing House Pvt.Ltd. Pandit& Gupta(2005), Structural Analysis - Matrix approach, (2NDed), McGraw Hillpublications, Gere & Weaver(1994), Matrix analysis of structures, Waveland press, ISBN-1577661435. JunnarkarS. B.&Shah H.J.(2015), Mechanics of Structures(Vol-II)(24thed) :Charotar Publishers. Vazirani and Ratwani(2002), Analysis of Structures: Vol. I II, Khanna Publishers, ISBN – 8174092056 Useful Links Prof. Devdas Menon http://www.nptelvideos.in/2012/11/advanced-structural-analysis.html. 					S. K. Hirde	,DrManojHedaoo	o, Techmax Public	ation.					
Delhi. 2 Norris, C.H., J.B. Wilbur &Utku S. (1948),Elementary Structural Analysis(1 st ed), New York: TataMcGraw Hill, New Delhi. 3. Wang C.K.(2014), Indeterminate Structural Analysis, New York: Tata McGraw Hill, New Delhi, ISBN – 007068135X 4. Menon D.(2008),Structural Analysis, New Delhi :Narosa Publishing house, ISBN – 8173197504. 5. Menon D.(2009),Advanced Structural Analysis, Narosa Publishing house, ISBN – 1842654977. 6. Muthu K. U., Azmi I &Janadharn M.(2011),Basic Structural Analysis:. I. K International Publishing House Pvt.Ltd. 7. Pandit& Gupta(2005), Structural Analysis - Matrix approach, (2 ND ed), McGraw Hillpublications, 8. Gere & Weaver(1994), Matrix analysis of structures, Waveland press, ISBN-1577661435 . 9. JunnarkarS. B.&Shah H.J.(2015),Mechanics of Structures(Vol-II)(24 th ed) :Charotar Publishers. 10. Vazirani and Ratwani(2002),Analysis of Structures: Vol. I II, Khanna Publishers,ISBN – 8174092056 Useful Links							ND						
 Norris, C.H., J.B. Wilbur &Utku S. (1948),Elementary Structural Analysis(1sted), New York: TataMcGraw Hill, New Delhi. Wang C.K.(2014),Indeterminate Structural Analysis, New York: Tata McGraw Hill, New Delhi, ISBN – 007068135X Menon D.(2008),Structural Analysis, New Delhi :Narosa Publishing house, ISBN – 8173197504. Menon D.(2009),Advanced Structural Analysis, Narosa Publishing house, ISBN – 1842654977. Muthu K. U., Azmi I &Janadharn M.(2011),Basic Structural Analysis:. I. K International Publishing House Pvt.Ltd. Pandit& Gupta(2005), Structural Analysis - Matrix approach, (2NDed), McGraw Hillpublications, Gere & Weaver(1994), Matrix analysis of structures, Waveland press, ISBN-1577661435 . JunnarkarS. B.&Shah H.J.(2015),Mechanics of Structures(Vol-II)(24thed) :Charotar Publishers. Vazirani and Ratwani(2002),Analysis of Structures: Vol. I II, Khanna Publishers,ISBN – 8174092056 Useful Links Prof. Devdas Menon <u>http://www.nptelvideos.in/2012/11/advanced-structural-analysis.html</u>. 	1.			to S. P. and You	ng D. H., (196	5),Theory of Stru	uctures $(2^{ND}ed)$,: N	lew York :Tata McC	Graw Hill, I	New			
New Delhi. 3. Wang C.K.(2014) ,Indeterminate Structural Analysis, New York: Tata McGraw Hill, New Delhi, ISBN – 007068135X 4. Menon D.(2008),Structural Analysis, New Delhi :Narosa Publishing house, ISBN – 8173197504. 5. Menon D.(2009),Advanced Structural Analysis, Narosa Publishing house, ISBN – 1842654977. 6. Muthu K. U., Azmi I &Janadharn M.(2011),Basic Structural Analysis:. I. K International Publishing House Pvt.Ltd. 7. Pandit& Gupta(2005), Structural Analysis- Matrix approach, (2 ND ed), McGraw Hillpublications, 8. Gere & Weaver(1994), Matrix analysis of structures, Waveland press, ISBN-1577661435 . 9. JunnarkarS. B.&Shah H.J.(2015),Mechanics of Structures(Vol-II)(24 th ed) :Charotar Publishers. 10. Vazirani and Ratwani(2002),Analysis of Structures: Vol. I II, Khanna Publishers,ISBN – 8174092056 Useful Links								ist is by an interview.		x x·11			
 Wang C.K.(2014) ,Indeterminate Structural Analysis, New York: Tata McGraw Hill, New Delhi, ISBN – 007068135X Menon D.(2008),Structural Analysis, New Delhi :Narosa Publishing house, ISBN – 8173197504. Menon D.(2009),Advanced Structural Analysis, Narosa Publishing house, ISBN – 1842654977. Muthu K. U., Azmi I & Janadharn M.(2011),Basic Structural Analysis:. I. K International Publishing House Pvt.Ltd. Pandit& Gupta(2005), Structural Analysis - Matrix approach, (2NDed), McGraw Hillpublications, Gere & Weaver(1994), Matrix analysis of structures, Waveland press, ISBN-1577661435 . JunnarkarS. B.&Shah H.J.(2015),Mechanics of Structures(Vol-II)(24thed) :Charotar Publishers. Vazirani and Ratwani(2002),Analysis of Structures: Vol. I II, Khanna Publishers,ISBN – 8174092056 Useful Links Prof. Devdas Menon <u>http://www.nptelvideos.in/2012/11/advanced-structural-analysis.html</u>. 	2		-		Utku S. (1948	8),Elementary Str	ructural Analysis(l ^a ed), New York: T	ataMcGrav	∦ H1ll,			
007068135X 4. Menon D.(2008),Structural Analysis, New Delhi :Narosa Publishing house, ISBN – 8173197504. 5. Menon D.(2009),Advanced Structural Analysis, Narosa Publishing house,ISBN – 1842654977. 6. Muthu K. U., Azmi I &Janadharn M.(2011),Basic Structural Analysis:. I. K International Publishing House Pvt.Ltd. 7. Pandit& Gupta(2005), Structural Analysis- Matrix approach, (2 ND ed), McGraw Hillpublications, 8. Gere & Weaver(1994), Matrix analysis of structures, Waveland press, ISBN-1577661435 . 9. JunnarkarS. B.&Shah H.J.(2015),Mechanics of Structures(Vol-II)(24 th ed) :Charotar Publishers. 10. Vazirani and Ratwani(2002),Analysis of Structures: Vol. I II, Khanna Publishers,ISBN – 8174092056 Useful Links	2				•	1 4 1 1 22			' ICDN				
 Menon D.(2008),Structural Analysis, New Delhi :Narosa Publishing house, ISBN – 8173197504. Menon D.(2009),Advanced Structural Analysis, Narosa Publishing house,ISBN – 1842654977. Muthu K. U., Azmi I & Janadharn M.(2011),Basic Structural Analysis:. I. K International Publishing House Pvt.Ltd. Pandit& Gupta(2005), Structural Analysis- Matrix approach, (2NDed), McGraw Hillpublications, Gere & Weaver(1994), Matrix analysis of structures, Waveland press, ISBN-1577661435 . JunnarkarS. B.&Shah H.J.(2015),Mechanics of Structures(Vol-II)(24thed) :Charotar Publishers. Vazirani and Ratwani(2002),Analysis of Structures: Vol. I II, Khanna Publishers,ISBN – 8174092056 Useful Links Prof. Devdas Menon <u>http://www.nptelvideos.in/2012/11/advanced-structural-analysis.html</u>. 	э.		0		minate Structu	ural Analysis, Ne	w York: Tata Mc	Jraw Hill, New Dell	ni, ISBN —				
 6. Muthu K. U., Azmi I & Janadharn M.(2011), Basic Structural Analysis:. I. K International Publishing House Pvt.Ltd. 7. Pandit& Gupta(2005), Structural Analysis- Matrix approach, (2NDed), McGraw Hillpublications, 8. Gere & Weaver(1994), Matrix analysis of structures, Waveland press, ISBN-1577661435. 9. JunnarkarS. B.&Shah H.J.(2015), Mechanics of Structures(Vol-II)(24thed) :Charotar Publishers. 10. Vazirani and Ratwani(2002), Analysis of Structures: Vol. I II, Khanna Publishers, ISBN – 8174092056 Useful Links 1. Prof. Devdas Menon <u>http://www.nptelvideos.in/2012/11/advanced-structural-analysis.html</u>. 		Mei	non D	0.(2008),Structu			v						
Pvt.Ltd. 7. Pandit& Gupta(2005), Structural Analysis- Matrix approach, (2 ND ed), McGraw Hillpublications, 8. Gere & Weaver(1994), Matrix analysis of structures, Waveland press, ISBN-1577661435 . 9. JunnarkarS. B.&Shah H.J.(2015), Mechanics of Structures(Vol-II)(24 th ed) :Charotar Publishers. 10. Vazirani and Ratwani(2002), Analysis of Structures: Vol. I II, Khanna Publishers, ISBN – 8174092056 Useful Links 1. Prof. Devdas Menon http://www.nptelvideos.in/2012/11/advanced-structural-analysis.html .	5.	Mei	non D	0.(2009),Advan	ed Structural	Analysis, Narosa	Publishing house	ISBN - 184265497	7.				
 7. Pandit& Gupta(2005), Structural Analysis- Matrix approach, (2NDed), McGraw Hillpublications, 8. Gere & Weaver(1994), Matrix analysis of structures, Waveland press, ISBN-1577661435. 9. JunnarkarS. B.&Shah H.J.(2015), Mechanics of Structures(Vol-II)(24thed) :Charotar Publishers. 10. Vazirani and Ratwani(2002), Analysis of Structures: Vol. I II, Khanna Publishers, ISBN – 8174092056 Useful Links 1. Prof. Devdas Menon <u>http://www.nptelvideos.in/2012/11/advanced-structural-analysis.html</u>. 	6.			U., Azmi I &Jan	adharn M.(201	11),Basic Structu	ral Analysis:. I. K	International Publis	hing House	•			
 8. Gere & Weaver(1994), Matrix analysis of structures, Waveland press, ISBN-1577661435. 9. JunnarkarS. B.&Shah H.J.(2015), Mechanics of Structures(Vol-II)(24thed) :Charotar Publishers. 10. Vazirani and Ratwani(2002), Analysis of Structures: Vol. I II, Khanna Publishers, ISBN – 8174092056 Useful Links 1. Prof. Devdas Menon <u>http://www.nptelvideos.in/2012/11/advanced-structural-analysis.html</u>. 	7			unto(2005) Str	otural Analysi	. Matrix approx	ch (2 ND ad) MaG	www.Willpublications					
9. JunnarkarS. B.&Shah H.J.(2015), Mechanics of Structures(Vol-II)(24 th ed) :Charotar Publishers. 10. Vazirani and Ratwani(2002), Analysis of Structures: Vol. I II, Khanna Publishers, ISBN – 8174092056 Useful Links 1. Prof. Devdas Menon http://www.nptelvideos.in/2012/11/advanced-structural-analysis.html .				A		A A		A	,				
10. Vazirani and Ratwani(2002),Analysis of Structures: Vol. I II, Khanna Publishers,ISBN – 8174092056 Useful Links 1. Prof. Devdas Menon http://www.nptelvideos.in/2012/11/advanced-structural-analysis.html .													
Useful Links Image: Control of the second secon									92056				
1. Prof. Devdas Menon http://www.nptelvideos.in/2012/11/advanced-structural-analysis.html.				10 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	<i>7,1</i> 1101 y 515 01			<u> </u>	2030				
				das Menon http	//www.nntelv	ideos.in/2012/11	/advanced-structur	al-analysis.html					
2. Prof. P. Bannerjee http://www.nptelvideos.in/2012/11/structural-analysis-ii.html.	2.												

$PO \rightarrow$	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 6	PO 8	PO 9	PO 10	PO 11	PO 12	PSO	PSO
CO↓													1	2
CO 1	3	3	1	2	-	2	-	1	-	3	-	2	2	2
CO 2	2	3	1	2	3	1	1	1	1	3	1	1	2	2
CO 3	2	2	1	2	-	1	-	1	-	3	2	3	2	2
CO 4	2	2	1	2	-	1	2	2	1	3	2	2	2	2

Knowledge Level	CT 1	CT 2	TA	ESE
Remember	2	2	2	10
Understand	2	2	2	10
Apply	7	7	2	14
Analyse	2	2	2	16
Evaluate	2	2	2	10
Create				
TOTAL	15	15	10	60

Government College of Engineering, Karad Final Year (Sem – VII) B. Tech. Civil Engineering												
		I	Final Year	• (Sem – `	VII) B. T	ech. Civ	vil Engine	ering				
		CE2713 :	: (Elective	IV) Eart	thquake	Resistar	nt Design o	of Structures				
Teach	ing Schei							Examination Sch	eme			
Lectur		3 Hrs/week						CT – 1	15			
Tutori		-						CT – 2	15			
Total (Credits	3						ТА	10			
								ESE	60			
								Duration of ESE	03 Hrs	00 Min		
-	e Outcon											
	nts will be											
		ummerize basic						engineering				
		ledge to solve p										
		onse of structur					es.					
4. ch	loose appi	ropriate earthqua	ake resistan	2								
T T 1 ()			·		<u>Course Co</u>		<u> </u>	.1 1 1 .	· · ·	Hours (05)		
Unit 1 Elements of Seismology : Terminology, structure of earth, causes of an earthquake, plate tectonic (theory, continental drift theory, elastic rebound theory, seismic waves, magnitude and intensity,												
								earthquakes, accele				
		nent earthquake		y Teleaseu,	, seismogi	apii, suo	ing motion	earinquakes, accele	iogram,			
Unit 2				ihrations	Free and	forced x	vibrations	f single degree of :	freedom	(08)		
										(00)		
	systems (SDOF). Undamped and viscously damped vibrations, equations of motion and solutions. General dynamic loading, Duhamel Integral, earthquake response of SDOF system											
Unit 3								e spectrum, constru	ction of	(07)		
	-							nping on design sp				
	•	· ·						er IS 1893-2002 Par				
Unit 4	4 Conce	eptual design:	Planning	aspect, lo	oad path,	stiffness	s and stren	ngth distribution, o	lifferent	(10)		
		ural system, liqu										
							y, behaviou	r of RC building,	ductility			
		uctile detailing o										
Unit 5								prced masonry, RC		(04)		
			t, openings,	, Provision	ns of IS 4	326. Rep	pair and stre	engthening of maso	nry and			
T T •4 4		embers.	4 1	• 4 4	1 4	1 •		1 171	1' 1'			
Unit (combi		tnquake ro	esistant n	nodern te	cnnique	s: Base Iso	lation-Elastomeric,	sliding,	(06)		
			iction domn	ore Tuno	d mass day	nnor (TN	(D) Visco	elastic dampers.				
Note		893 Part I is all			u mass uai	nper (11	1D), VISCO-					
Text F				iiiiiiatioii.								
		K (2013) Earth	anake Resi	stance De	sign of Str	uctures()	2 nd ed.) New	v Delhi: Oxford Uni	versity P	ress		
								lhi: Prentice Hall In				
		004). Structural								214.		
								l.). New Delhi:Wile	v India F	vt. Ltd.		
	ublication	· / I							5			
Reference Books												
1. C	Chopra, A	. K., (2020).Dyn	amics of St	tructures(5	ö th ed.). Ne	w Delhi:	Prentice Ha	Il Publications.				
			Earthquake	Resistant	Design	and Risk	Reduction	n(2 nd ed.). New D	elhi:Johr	Wiley		
	ublication											
		016 Part I, IS 13	920, IS 432	6 Bureau o	of Indian S	Standards	s, New Delh	ni.				
-	l Links											
-	ww.nicee	~										
2. h	ttps://npte	el.ac.in/courses/	105/106/105	5106151/								

$PO \rightarrow$	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 6	PO 8	PO 9	PO 10	PO 11	PO 12	PSO	PSO
CO↓													1	2
CO 1	1	1	1	1	-	-	1	1	-	1	-	1	3	3
CO 2	2	2	2	2	1	-	-	1	-	-	-	2	3	3
CO 3	3	2	2	2	2	-	-	1	-	1	-	2	3	3
CO 4	-	2	1	1	2	1	1	2	-	3	-	3	3	3

Knowledge Level	CT 1	CT 2	TA	ESE
Remember	5	2	1	6
Understand	7	3	1	7
Apply	3	6	1	13
Analyse	0	3	3	14
Evaluate	0	0	3	15
Create	0	1	1	5
TOTAL	15	15	10	60

Government College of Engineering, Karad Final Year (Sem – VII) B. Tech. Civil Engineering CE2723: (Elective IV) Tunnel Engineering

		CE272	3: (Elective IV)	Tunnel Engineering						
Fi	Calcana			E	C-1					
Feaching	Scheme	2 II.m./		Examinatio						
Lectures		3 Hrs/week		<u>CT - 1</u>	15					
<u>Futorials</u>	P.	-		<u>CT - 2</u>	15					
Fotal Crec	lits	3		TA	10					
				ESE	60					
<u> </u>				Duration of	ESE 02 Hrs 30 Min					
	utcomes (
	vill be able		1							
		l apply the concepts of tu	<u> </u>							
		ement the methods of tu		1 6 1 4	1' 1 1'	1				
			nel maintenance a	and can formulate re-	medial measures regardin	g comple				
man	ntenance is	sues.	0 0	4 4						
T T 1 / 4	0		Course Co			Hours				
Unit 1					dvantages of tunnels and	(05)				
	·	•			of tunnelling, selection of					
	-		ion of tunnels and	tunnel approaches. Int	roduction to under water					
TT	tunnelli		• • • • •	· · · · · ·		(0.0)				
Unit 2					on before planning ii)	(06)				
		ation at the time of plan								
	U	-	<u> </u>	n of snape and size: -	i) D section ii) Circular					
		rectangular section iii) I		a mathad ii) Naadla h	am mathed					
Unit 3		s of tunnelling (soft rock ling in water bearing so			eann method.	(05)				
Unit 5					: -i) Bulkhead ii) Airlock	(05)				
			s of tunnening of c	compressed air method	-1) Bulkhead II) Alflock					
Unit 4		es of air lock.	traduction com	noo of opportions and	nhages of energians for	(06)				
Unit 4		Tunnelling in Hard rocks: -Introduction, sequence of operations and phases of operations for tunnelling in rock.								
			· i) Drift mathed	ii) Handing and han	ch method iii) Full face					
	method		I) Difft method	II) Heading and bein	ch method m) Fun face					
			ing mucking in a	stoop grade tuppellin	g. Hauling, drilling, drill					
	hole pat		ing, mucking in a	steep grade tunnening	g. Hauning, urning, urni					
		ves: -PENT (Penta Enytl	hrital) TNT (Tri_N	Jitro-Toluene) RDX (Rapid Detonating					
		ve), Safety precautions i		(IIIO-TOILICIE), KDA (I	Kapid Detonating					
	·	ling in soft rocks:- Fore		edle beam method_sh	ield method and its					
		e of operation, merits an		cedie beam method, sn	ferd method and its					
Unit 5		w Austrian tunnelling r		And tunnel boring m	achine: -Introduction	(08)				
enite		concept. Main features			introduction,	(00)				
					slurry machine, ii) earth					
		e		e ,	n to urban tunnelling and					
	^	rface tunnelling	× ×	57	8					
Unit 6		maintenance: -Tunnell	ing: -Necessity, m	aterials required, seque	ence of tunnel lining.	(07)				
		e of tunnels: -Introduction								
	Tunnel	ventilation: -Temporary	ventilation, dust p	revention, lighting, and	d permanent drainage.					
	Health p	protection in tunnels: -Sa	afety measures, he	alth protection: -Silicos	sis, caisson disease.					
Cext Bool	KS									
			U U	Publisher:- Charotar	Publishing House Pvt. Ltd	d.(Edition				
		2016 ISBN : 978-93-850								
		nel Engineering" Publi	isher:-Vayu Educa	ation of India, (ISB	N-10 : 9383137339, ISI	3N-13:978				
	3137336)			1						
Reference										
2^{nd} ,I	SBN-1498	766242)		-	to Tunnel Construction" (I					
036	7782184, 1	st edition (31 March 202	21))		N-10 : 0367782189,ISBN					
3. Mai	dl, John W	iley. Publisher Wilhel	lm Ernst & Sohr	n Verlag fur Archite	ktur und technische Wiss	senschafte				
		Tunnel Engineering Stru								

4.	IS. 5878 code of practice for construction of tunnels.							
Usef	Useful Links							
1.	Application of tunnel boring machine in undergro	und mining deve	elopment					
	https://www.researchgate.net/publication/280233359_							
2.								
	https://www.researchgate.net/publication/272498361							
3.	3. <u>https://www.imia.com/wp-content/uploads/2013/05/TBM-WG60-f-021209.pdf</u>							

$PO \rightarrow$	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO	PSO
CO↓													1	2
CO 1	1	3	3	-	3	-	1	-	-	-	-	1	2	1
CO 2	2	2	-	3	2	-	-	-	-	-	-	-	1	1
CO 3	-	-	-	2	3	-	-	-	-	-	-	-	1	1

Knowledge Level	CT 1	CT 2	TA	ESE
Remember	5	-	2	12
Understand	5	5	2	12
Apply	5	5	2	12
Analyse	-	5	2	12
Evaluate	-	-	2	12
Create	-	-	-	-
TOTAL	15	15	10	60

			Government Colle					
			Final Year (Sem – VI					
T			2733: (Elective IV) Gr	een Building	and Susta			
	ching So					Examination Sch CT – 1		
	tures orials	3 Hrs/week				CI - I CT - 2	15 15	
	al Credit	s 3				TA	10	
100		s 5				ESE	60	
						Duration of ESE		30 Min
Cou	irse Out	comes (CO)				Duration of LDL	02 1115	2010111
		be able to						
1.	Expose	concepts of sustain	ability in the context of b	uilding and cor	ventional e	engineered building i	naterials.	
			ources consumption and i					
			resources balance concep					
4.	Aware of	of various green bui	ilding councils (OTTY),		IA) and (IC	GBC).		1
				rse Contents				Hours
Uni			tainability and green by ding, comparison betwee					(06)
		ergy and Operation d calculators of pla	al energy in Building and	l Life cycle ene	ergy. Ecolog	gical footprint, Bio-	capacity	
Uni			lls: Role of Material: Ce	ments and cerr	nentitious n	naterial. Alternative	fuel for	(07)
CIII			on in carbon emission.					(07)
			ral resource utilization,					
	eta	c. concrete with a	lternative material for s	sustainability a	nd introdu	ction to concept of	carbon	
	mi	nimization.						
				~ .				
Uni			resources consumption:					(07)
			Iodel analysis, Audit re Energy for grinding an					
			n building role of mater					
			nergy performance emiss					
		ality.		1		I ,		
	_	-						
Uni			consumption: Paints,					(07)
			C) emission issues and in					
		01	eduction and net zero bu	01		6 6	energy	
	en	iciency and examp	le of optimization throug	n use of Evolut	ionary gene	etic algorithm.		
Uni	it 5 Fr	erov and resour	ces balance: Radiation	hudget Surfac	e water ha	lance Effects of tr	rees and	(06)
UII			cation through greening.					(00)
			gy in buildings, basic con			a moto vonune (Bh	() und	
			8,					
Uni	it 6 Er	ergy codes: ECB	C requirement, Concepts	s of Overall Th	nermal Trai	nsfer Value (OTTY)), Green	(07)
			requirements of Leader					
			tegrated Habitat Assess	ment (GRIHA)) and India	an Green Building	Council	
	(IC	GBC).						
D - P		Poolva						
	erence F		r: Concepte Design and (Taca Studias A1	 lon D T o	nd Shoppord D. P. 1	Drantica I	Jall Lat
<u>1.</u> 2.			g: Concepts, Design and C in sustainable design and					ian i al
<u>2.</u> 3.			ssment Guidelines Notifi				alla,	
4.		A	nmental Management Ma					
5.			ew Delhi Bureau of Energ				2007	
	ful Link	~ .		- J				
CDC	IUI LIIIN							
1.			.ac.in/noc19_ce40/previe	W				
	https://	onlinecourses.nptel openuped.eu/course	l.ac.in/noc19_ce40/previe es/details/4/447-green-bu ools-and-courses/student	ilding-and-susta		· · · · · · · · · · · · · · · · · · ·		

$PO \rightarrow$	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO	PSO
CO↓													1	2
CO 1	1	-	1	1	-	2	3	-	-	-	-	-	3	3
CO 2	1	2	2	1	1	1	2	-	-	-	-	1	2	2
CO 3	2	2	2	1	1	1	2	-	-	-	-	1	2	2
CO 4	-	-	1	2	2	2	2	-	-	1	2	1	3	2

Knowledge Level	CT 1	CT 2	TA	ESE
Remember	5	5	2	18
Understand	4	4	5	17
Apply	1	1	2	10
Analyse	3	3	1	07
Evaluate	2	2	1	08
Create	-	_	_	-
TOTAL	15	15	10	60

			C	Government (College of Eng	ineering, Kar	ad			
Final Year (Sem – VII) B. Tech. Civil EngineeringCE2743: (Elective IV) Municipal Solid Waste Management										
		CE2	2743:	(Elective IV)	Municipal Sc	olid Waste Ma	anagement			
	ching S		_				Examination Sch			
	tures	3 Hrs/week					CT - 1	15		
	orials	-					<u>CT - 2</u>	15		
Tota	al Credit	s 3					ТА	10		
							ESE Duration of ESE	60	30 Min	
Cou	rse Out	comes (COs)					Duration of ESE	021115	30 WIII	
		l be able to								
		and elements of sol	olid wa	aste managemer	nt.					
2.		e elements of solic		v		lection, transpo	rtation, processing a	nd dispos	al	
		of processing and d	dispos	sal system for ef	ffective solid wa	ste managemen	ıt			
	U	1 0		2		0				
					Course Conter				Hours	
Uni							es, Physical, Chemi		(07)	
							al elements, Enviro			
							t scenario and mea			
		prove system for	ante	erent functional	elements of so	lid waste mana	agement system, Leg	gislative		
Uni			ration	Rate and Tr	ansfer Station.	Solid Waste (Generation Rate: De	finition	(06)	
		pical values for In				Solid Waste	Scheration Rate. De	iiiitioii,	(00)	
						e storage at sou	rce, Collection com	ponents,		
		pes of collection s				6	, j			
	Ti	ansfer station: Me	eaning	g, Types, Capac	city, Location an	nd Viability. Tr	ansportation of solid	d waste:		
	Means and methods.									
Uni							cycling: Waste Pro		(07)	
		1 1	,			· 1	t separation techniqu	es.		
		aterial Recovery an cycled materials ar			lives, Recycling	program eleme	nts, Commonly			
					rameters affect	ing Fundamen	tals of thermal pro	cessing		
		omethanation, Pyr						cessing,		
Uni							ologies, Factors at	ffecting,	(06)	
		operties of compos				8	8	U,		
Uni		andfills: Site selects s management.	ction,	Types, Princip	ole, Processes, I	and filling me	thods, Leachate and	landfill	(07)	
Uni	v	v	: Gen	eration, identif	ication, storage	, collection, tra	ansport, treatment, c	common	(07)	
	tre	atment and dispos	sal, o	occupational haz	zards and safety	measures, bio	medical waste legisl	ation in		
		dia				1				
	t Books									
1.		A.D. And Sundare			ste Managemen	t", Indian Natio	nal Scientific			
		entation Centre, 1 ^s				C	T 141 1			
2.		EO, "Manual on M nmental Engineeri		A	•					
3.		Tchobanoglous, "								
5.		ny Limited, 1 st Edi				, 10010010				
Ref	erence I	Books								
1.		d, Worrell, and Re								
2.	G. Mas	ters, "Introduction	n to Ei	nvironmental E	ngineering and S	Science", Pearso	on Education, 2004			
3.	Peavy,	Rowe and Tchoba ny Limited, 11 th E	anoglo Edition	ous, "Environme 2017	ental Engineerin	ig", Tata McGra	aw-Hill Publishing			
Use	ful Link		aniol	1, 2017.						
1.		pal Solid Waste M	Ianage	ement by Prof.	Ajay Kalamdha	d, IIT Guwahat	i i		1	
	https://	onlinecourses.npte	el.ac.ii	<u>n/noc21_ce69/p</u>	preview					
2.	•	ted Waste Manage			•••	sh Kumar Dube	ey, IIT Kharagpur			
	https://	onlinecourses.npte	el.ac.ii	<u>n/noc21_ce46/p</u>	preview					

$PO \rightarrow$	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO	PSO
CO↓													1	2
CO 1	3	-	-	-	-	-	3	-	-	-	-	-	2	2
CO 2	-	2	2	-	-	-	3	1	-	-	-	2	2	2
CO 3	-	2	3	-	-	-	3	1	1	-	-	2	2	2

Knowledge Level	CT 1	CT 2	ТА	ESE
Remember	5	-	2	12
Understand	5	5	2	12
Apply	5	5	2	12
Analyse	-	5	2	12
Evaluate	- 1	-	2	12
Create	-	-	-	-
TOTAL	15	15	10	60

			Government Col	lege of Enginee	ring, Kara	d		
		I	Final Year (Sem – V	/II) B. Tech. Ci	vil Engine	ering		
			CE2753: (Electiv	ve IV) Coastal l	Engineerin	g		
						1		
Teachir						Examination Sch		
Lectures		3 Hrs/week				CT – 1	15	
Tutorial		-				CT – 2	15	
Total Ci	redits	3 Hrs/week				ТА	10	
						ESE	60	
						Duration of ESE	02 Hrs	30 Min
		nes (CO)						
Students	s will be	e able to						
1. ider	ntify typ	es of offshore st	ructures and various e	nvironmental load	ls acting on	offshore structures.		
2. und	erstand	use of different	materials for marine a	pplications.				
3. eval	luate for	ces on coastal st	tructures and coastal e	rosion protection	measures.			
4. app	ly know	ledge coastal Er	ngineering in inspectio	n and testing of o	cean structu	res.		
	Ī	-	C	ourse Contents				Hours
Unit 1	Offsh	ore structures:	: Different types, Var	ious structural sy	stems deplo	oyed for shallow, n	nedium,	(7)
			waters, Various envir					
	types	of coastal struc	tures, Brief introducti	on to design of o	ffshore stru	ctures, Foundation	systems	
	for oc	ean structures, S	Sea bed anchors, Dredg	ging methods and	equipment.		•	
Unit 2			ine applications: T			r applications in	marine	(6)
			ies and selection of ma					
			Introduction to comp					
		ials in marine en				Ĩ		
Unit 3	Wave	deformation :	zonation based on beh	naviour of waves,	causes of w	ave deformation, in	portant	(6)
			enomenon, refraction,				1	~ /
			bes and applications,				bes and	
		tages, break wat		,		51 - 51		
Unit 4		-	stics :long shore sedin	nent transport, Rad	diation stres	ses		(7)
			uctures : Non-breakir					
	Scour	under marine	structure : Importance	e of scour, charac	teristics, Sc	our due to steady cu	rrent	
Unit 5	Coast	al erosion prot	ection measures : Me	chanics of sedime	nt transport.	, coastal sediment bu	ıdget,	(7)
	causes	s of erosion, con	trolling measures, pro	tection works type	es, gryones,	sea walls, offshore	C	
			factors needed for sele				anning	
	of coa	st protection wo	orks, Case studies.				Ū.	
Unit 6	Inspe	ction and testi	ng of ocean structur	es, Introduction	to Non-dest	ructive testing, Rep	air and	(7)
	-		rine structures, Planr			Ç 1		
	Struct	ural health moni	itoring of ocean struct	ures				
Text Bo								
1. AP	I-RP2A	. 1989. Recom	mended Practice for H	Planning, Designi	ng and Con	structing Fixed Off	shore Pla	atforms:
			eum Institute, Washing	v v	C	C		
			ydrodynamics of Offsh		omputationa	l Mechanics		
			actice for Fixed Offsho				on.	
Referen								
1. Na	rasimha	n S., Kathiroli S	5. and Nagendra Kuma	ar B. —Harbour a	nd Coastal	Engineering (Indian	Scenario	o) Vol.I
-		T Chennai 2002		. 137				
	-		ion to Coastal Enginee					
			ynamics. PHI Pvt.Ltd.					
			shore Structure Model	Č .			.	0.1
		2. Rules for the I	Design, Construction a	nd Inspection of (Offshore Stru	uctures: Det Norske	Veritas,	Oslo.
Useful I								
	-		114/106/114106032/					
2. <u>htt</u>	ps://npte	el.ac.in/content/s	syllabus_pdf/11410603	<u>35.pdf</u>				

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	1	-	-	1	-	1	-	-	-	-	-	1	1
CO2	3	1	-	-	-	-	-	-	-	-	1	-	1	1
CO3	1	-	2	1	-	2	2	-	-	-	-	1	1	1
CO4	-	-	2	-	2	1	-	2	1	2	-	-	1	1

Knowledge	CT1	CT2	TA	ESE
Level				
Remember	5	3	2	15
Understand	5	5	2	15
Apply	5	5	2	12
Analyze		2	2	9
Evaluate			2	9
Total	15	15	10	60

			Government Co	<u> </u>				
			Final Year (Sem – Y					
		CE2704	4: Design of RCC a	and Pre-Stressed	l Concrete	Structures		<u> </u>
			1					
	ng Sche					Examination Sch	1	
Lecture		3 Hrs/week				CT - 1	15	
Tutoria		-				<u>CT - 2</u>	15	
Total C	redits	3				TA	10	
						ESE Duration of ESE	60 03 Hrs	00 Min
Course	Outoon	nes (CO)				Duration of ESE	05 HIS	
	ts will be							
			and principles related	to different design	methodolo	gies and philosophie	s under 1	oading
	d standar	* * *	and principles related	to unrerent design	methodolog	gies and philosophie	s under i	oading
			ethods to design diffe	rent structures acco	ording to sta	ndard codes.		
			parameters in structur					
			res and make necessa		Ŭ			
F==				ourse Contents	8	-8		Hours
Unit 1	Limit	State of Colla	pse: torsion behavior		ar sections s	subjected to torsion,	design	(07)
			to combined bending				U	
Unit 2			of two span continue				ising is	(08)
			f moment redistribution		_		-	
Unit 3			k: Introduction to wor					(09)
			design of water tank					
			xible and rigid joint		nd floor, (ii) rectangular water	r tanks,	
			tate method (LSM), IS					
Unit 4		· ·	-stressing, historical c		•			(08)
			ioned and post tension	oned member, flex	xural streng	th of pre-stressed c	concrete	
Unit 5		ns, introduction		mmatrical Lagation	a different	achla macfilac		(06)
Unit 6	2		ed rectangular and synettic ed concrete: rectangu				orio: (i)	(06) (08)
Unito		n of section for		nai and Symmetri		is for following crit	ena. (1)	(00)
	0		for the limit state of c	ollanse in flexure				
Text B		esign of section						
		. C., Jain, A.K.,((2015). R.C.C. Design	$a(10^{\text{th}} \text{ ed.})$. New De	elhi: Laxmi I	Publication.		
2. St	nah. V. I		2014). Limit State The	eorv and Design o	f Reinforced	<i>l Concrete</i> (8 th ed.).	Pune: St	ructures
	iblication				, <u>,</u>			
3. Si	nha, N.C	C., Roy, S.K., (20	013). Fundamentals o	f Reinforced Conc	rete (4 th ed.)	. New Delhi: S.Char	nd public	ations.
			orced Concrete: Lim					
pt	ublication	n		0.	·			
	nce Boo							
1. Va	arghese,	P.C.,(2004). Lin	nit State Design of rei	nforced concrete(2	2 nd ed.). New	V Delhi:Prentice Hal	l Publica	tions.
2. IS	456-200	0: Plain and rei	nforced concrete - co	de of practice.				
		· •	actice for design load	-	· ·	6	ires. part	1: dead
			ling materials and stor					
			practice for design lo	oads (other than e	arthquake) f	for buildings and st	ructures.	part 2:
	A	bads (second rev						
			ctice for pre-stressed of		• •			-
			concrete structures for		lids			
7. SF	234: 198	/,handbook on c	concrete reinforcemen	t and detailing				
	Titut				[
Useful			05105104/					
	<u> </u>	l.ac.in/courses/1						-
2. <u>ht</u>	ups://en.v	wikipedia.org/wi	iki/Reinforced_concre	<u>ne</u>				

$PO \rightarrow$	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 6	PO 8	PO 9	PO 10	PO 11	PO 12	PSO	PSO
CO↓													1	2
CO 1	3	2	1	1	1	-	-	1	-	1	-	2	3	3
CO 2	2	3	2	2	2	1	2	1	-	1	1	1	3	3
CO 3	3	3	2	1	2	1	-	1	-	3	1	3	3	3
CO 4	3	2	2	2	2	2	3	2	1	3	2	3	3	3

Knowledge Level	CT 1	CT 2	TA	ESE
Remember	5	2	1	6
Understand	6	2	1	8
Apply	4	6	1	11
Analyse	0	4	4	15
Evaluate	0	0	3	15
Create	0	1	0	5
TOTAL	15	15	10	60

			Government College of Engineering, Ka	ad		
		F	'inal Year (Sem – VII) B. Tech. Civil Engin	eering		
			CE2705: Hydraulic Structures			
Teach	ning Schei			Examination Sch		
Lectu		03 Hrs/week		CT – 1	15	
Tutor		-		CT – 2	15	
Total	Credits	03		ТА	10	
				ESE	60	
				Duration of ESE	02 Hrs 3	30 Min
	se Outcon					
	nts will be					
			, gravity dam, earthen dam, spillway, canal, rive	-	water po	wer.
		<u> </u>	ulic structure to solve or analyze the problem as	sociated with.		
3. d	lesign hyd	raulic structures	s in irrigation engineering			
			Course Contents			Hours
Unit			s: Types of dams, selection of site for dams, selection	• •	•	(06)
			ass curves, Area elevation curve & Elevation ca		levels,	
			Control of Losses in reservoirs, Classification of D			
Unit			es of earthen dams, Components and their function			(08)
			ign criterion, plotting of phreatic line, Modes			
		ires-Drainage &	filters, stability of slopes for sudden drawdown	& steady seepage, R	ock fill	
	dams	4 D E		1	. 1	
			es acting on dam, Design Criterion-theoretical ar			
		-	on of dam, stability analysis, and methods of con Introduction & types only. Introduction to instrum	-	a joints	
Unit			and function components of spillway, different ty		choice	(07)
Omt	-	•	Elementary hydraulic design, types of energy dis			(07)
		illway.	chementary hydraune design, types of energy dis	sipation arrangement	s, gaies	
	-	•	ter- Gradually varied flow(GVF), Rapidly varied f	low(RVF)		
			tlets through concrete and earth dams, different ty			
Unit			ks: Component parts & their functions, types of		T Weir.	(06)
eme			remedies, Introduction to Theory of seepage-Blig			(00)
		ent, Khosla's the		1 ,		
Unit			ment, typical sections of canals, balancing depth	Kennedy's and Lace	ey's silt	(07)
			purpose, types, selection and economics.	5	5	
	Lift Iı	rigation method				
	C.D.	Works: Necessi	ty, Types, Canal Regulatory Works: head regulate	or, cross regulator, ca	nal fall,	
		escape, standing				
Unit			Classification and types of river, meandering phen			(08)
			orks: Classification-Marginal bunds, Guide l	anks and Groynes.	River	
			ng of rivers, National perspective plan			
		U	measurement, water discharge rating curves			
			s changing risk, flood and ecosystem		1.1	
			power Structures: Hydro-power structures and i			
		s of hydro-power	onents parts-Intakes, conveyance system, surge ta	inks, Power nouse, Ta	ш гасе,	
	Types	s or nyuro-power	piano.			
Tovt	Books					
		Irrigation Engin	neering',Khanna Publishers, Delhi. (23 rd Edition),	2009		
			er Resources and Water power Engineering', Star		Edition) '	2019
			and water power Engineering", 16th edition,2009		,	
	ence Bool					
			Structures Vol. 1. & Vol. 2",Mir Publishers Mosco	ow, 1982		
			Engineering: Volume Six: Dams- Leliavsky, Serg		Publishi	ng Co
	Pvt. Ltd.,					
			nited States Department of the Interior, Bureau of	Reclamation revise	d renrin	t 1974
	Ū	nd IBH Publish	^		s reprin	· · / / T,
			C. Nalluri and R.Narayanan, "Hydraulic Structure	s" Taylor and Francis	N II K	
			ent and Training ,CBIP publication.	, rugior and ranon	., U. IX .	
			tion Water Management (Principles and Practic	es)' Prentice Hall of	India(P)	Ltd(2 nd
	Edition)20	•		,		

7.	Asawa G. L. 'Irrigation Engineering' New Age International Publishers (2 nd Edition)2005									
8.	Dr. Murtaza Ali, 'Land Soil and Water Resources' Koros Press Ltd(1st Edition)2015									
9.	IS Code 6512: Criteria for Design of Solid Gravity Dams									
10.	IS Code 7894: Code of Practice for Stability Analysis of Earth Dam									
11.	IS Code 8826: Guidelines for Design of Large Earth and Rockfill Dams									
12.	IS 11155 : 1994 Construction of spillways and similar overflow structures - Code of practice									
13.	IS 6531 : 1994 Canal Head Regulators - Criteria for Design									
Use	ful Links									
1.	NPTEL Course-Civil Engineering-IIT Kanpur-Water Resources Engineering by Prof. R. Srivastav-									
	http://nptel.ac.in/courses/105/104/105104103/									

$PO \rightarrow$	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 6	PO 8	PO 9	PO 10	PO 11	PO 12	PSO	PSO
CO↓													1	2
CO 1	3	3	3	3	1	1	1	-	-	-	-	-	2	2
CO 2	3	3	3	3	3	2	1	-	-	-	-	-	2	2
CO 3	3	3	3	3	3	2	1	-	-	-	-	-	2	2

Knowledge Level	CT 1	CT 2	TA	ESE
Remember	4	4	2	12
Understand	4	4	2	12
Apply	2	2	2	12
Analyse	2	2	2	12
Evaluate	3	3	2	12
Create	-	-	-	-
TOTAL	15	15	10	60

	Govern	nent College of E	ngineering, K	arad				
		(Sem – VII) B. To	<u> </u>					
CE 27 1	16 : (Open Elective)				ngineering Lab			
Laboratory Sche	eme:		E	xaminati	on Scheme:			
Practical	2 Hrs/week		C	A	25			
Total Credits	1							
Course Outcome	S:							
Students will be								
1 develo	op logic and algorithm	or a program to serv	ve a purpose					
2 code a	a program							
3 use th	e program to serve a p	rpose						
		Course Con	tents					
Activity 1	SQL, MS Access Fu	damentals						
Activity 2	Relational Query, In		Storage manage	ement, Tra	insactions			
Activity 3	MATLAB Fundame							
Activity 4		ators (non-Nested), 3 Prize Problem						
Activity 5	Table and Dictionar							
Activity 6	Depth First Search a							
Activity 7					sm polling, a race condition			
Activity 8	-	<u> </u>		rical Predi	iction, Classification			
Activity 9	Python: Collection,	1						
Activity 10	Stats: Basic Stats (R Estimation and infer		bability, Linear	Regression	n, Hypothesis Testing,			
Activity 11	Linear Algebra, Opt	nisation, Probabilis	tic Models and I	Distribution	n Family			
Activity 12	Algorithm Modifica	ons						
Requirement	HTML 5, CSS, JS,	SQL, Python, MA	TLAB					
Tools:								
List of Submissio	ons:							
Activity 1-12	Coding for Variou	Problem Statemer	nts (Civil Engir	neering R	elated)			

$PO \rightarrow$	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 6	PO 8	PO 9	PO 10	PO 11	PO 12	PSO	PSO
CO↓													1	2
CO 1	2	3	3	3	2	2	1	-	-	-	-	-	2	2
CO 2	2	3	3	2	2	2	1	-	-	-	-	-	2	2
CO 3	2	3	3	3	2	2	1	-	-	-	-	-	2	2

Skill													Avg
Level (as	Act												
per CAS	1	2	3	4	5	6	7	8	9	10	11	12	
Sheet)													
Task I	15	15	15	15	15	15	15	15	15	15	15	15	15
Task II	05	05	05	05	05	05	05	05	05	05	05	05	05
Task III	05	05	05	05	05	05	05	05	05	05	05	05	05
CA	25	25	25	25	25	25	25	25	25	25	25	25	25

	Govern	ent College of H	Engineering, Ka	rad	
			ech. Civil Engir		
CE	2726: (Open Electi	e IV Lab) Data	Science for Civi	il Engine	ering Lab
Laboratory Schem	e:		Ex	aminatio	n Scheme:
Practical	2Hrs/week		CA	L	25
Total Credits	1				
Course Outcomes:	1.4				
Students will be ab					
	ise of DBMS sic ML Models				
	and Train AI Systems				
5 depioy	and ITalli AI Systems	Course Cor	tonts		
Activity 1	Stats 1: Frequency di			ations on I	MATLAB
Activity 2	Stats 2; Probability a	Random Variabl	es on MATLAB		
Activity 3	Depth First and Brea				
Activity 4	Heuristic Functions,				
Activity 5	Population-based me	ods: Colony Opti	mization, Genetic	Search	
Activity 6	Optimal Paths				
Activity 7	Game Play & Algorit				
Activity 8	Problem Decomposit				
Activity 9	Automated domain-in				
Activity 10	Pattern Directed inter			erference	system, rete system
Activity 11	Project Application:				
Activity 12	Model-based diagnos		ocessing.		
Requirement	Scikit Library of Py	ion, MATLAB.			
Tools:					
Tutorials	Practice Problems				
List of Submissio	n:				
Activity 1-8	Coding for Various	roblem Stateme	ents (Civil Engine	eering Re	elated)

$PO \rightarrow$	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 6	PO 8	PO 9	PO 10	PO 11	PO 12	PSO	PSO
CO↓													1	2
CO 1	2	2	3	2	2	1	-	-	-	-	-	-	2	2
CO 2	2	3	3	2	2	1	-	-	-	-	-	-	2	2
CO 3	2	3	3	2	2	1	-	-	-	-	-	-	2	2

Skill													
Level (as	Act	Ava											
per CAS	1	2	3	4	5	6	7	8	9	10	11	12	Avg
Sheet)													
Task I	15	15	15	15	15	15	15	15	15	15	15	15	15
Task II	05	05	05	05	05	05	05	05	05	05	05	05	05
Task III	05	05	05	05	05	05	05	05	05	05	05	05	05
СА	25	25	25	25	25	25	25	25	25	25	25	25	25

	Govern	nent College of E	ngineering, Ka	arad	
		(Sem – VII) B. To	<u> </u>		
	CE 2717: (Elec	tive III Lab) Ren	note Sensing an	d GIS L	ab
Laboratory Scho	eme:		Ex	xaminatio	on Scheme:
Practical	2 Hrs/week		C	A	25
Total Credits	1				
Course Outcome	es:				
Students will be					
	onstrate the satellite d				
	nodify and manipula				. 1
3 categ	orise the different lar	Course Con		issificatio	in tools
Experiment 1	Introduction to Sat			us platfo	rms (Bhuvan/ USGS
	Explorer etc)	inte Data. Data or	owsnig on varie	Jus platio	
Experiment 2	Familiarization wit	Digital Image Pr	ocessing		
Experiment 3	Image rectification	and Registration			
Experiment 4	Image Enhancemen	t			
Experiment 5	Unsupervised Class	ification			
Experiment 6	Supervised Classifi	cation			
Experiment 7	Geo-referencing an	l Projection			
Experiment 8	Spatial Data Analy	is			
Experiment 9	Preparation of Non	Spatial Data, Link	ing Spatial and	Non-Spa	tial data
Experiment 10	Spatial and Non sp	tial Query and An	alysis		
Experiment 11	Vector Data Analys	is			
Note:	Student needs perfe	rm any 8 experime	ents out of the a	bove liste	ed experiments.
Requirement Tools :	Q- GIS Software/ I	wis Software/ Arc	GIS Software/ I	Erdas Ima	agine Software.

$PO \rightarrow$	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO	PSO
CO↓													1	2
CO 1	1	1	1	1	2	1	-	-	-	-	-	-	1	1
CO 2	1	3	2	3	3	1	-	-	-	-	-	-	2	2
CO 3	1	3	3	2	3	2	-	-	-	-	-	-	2	2

Skill Level (as per CAS Sheet)	Exp 1	Exp 2	Exp 3	Exp 4	Exp 5	Exp 6	Exp 7	Exp 8	Exp 9	Exp 10	Exp 11	Avg
Task I	15	15	15	15	15	15	15	15	15	15	15	15
Task II	05	05	05	05	05	05	05	05	05	05	05	05
Task III	05	05	05	05	05	05	05	05	05	05	05	05
CA/TA	25	25	25	25	25	25	25	25	25	25	25	25

		Governm	ent College of Engi	neering, Karad	
			em – VII) B. Tech.		g
		CE2727 : (Electiv	e III Lab) Water P	ower Engineering	g Lab
Laboratory	Scheme:				tion Scheme:
Practical		2 Hrs/week		CA	25
Total Cred	its	1			
Course Ou	tcomes				
Students w		to:			
1			roelectric power plant	t.	
2	analyse th	e performance of var	ious turbines.		
3	utilize the	concepts in the cour	e to analyse similar sy	ystems, which will a	cknowledge students to work
	together in	n a project related to	he course content.		C C
			Course Content	S	
Experimen	t 1 T	o demonstrate the mo	del of hydroelectric po	ower plant and draw	its layout.
Experimen	t 2 T	he constructional det	uls of kaplan turbine a	and draw its fluid flo	w chart.
Experimen	t 3 T	he constructional det	uls of francis turbine a	and draw its fluid flo	w chart.
Experimen	t 4 T	he constructional det	uils of pelton turbine a	nd draw its fluid flow	w chart.
Experimen	t 5 P	erformance test on a	Pelton Wheel Turbine		
Experimen	t6 P	erformance test on a	Francis Turbine.		
Experimen	t7 P	erformance test on a	Kaplan Turbine		
Experimen	t 8 W	/ater hammer effect i	n pipes.		
List of Sub	mission:				
		ubmission of conduct	ed experiments		
	Si	te Visit Report			

PO	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO	PO	PO	PSO	PSO
\rightarrow										10	11	12	1	2
CO↓														
CO 1	3	2	1	2	2	1	2	-	1	1	2	-	1	1
CO 2	3	2	1	2	2	1	2	1	1	1	2	-	1	1
CO 3	3	3	2	2	3	2	2	1	2	1	2	1	1	1

Skill Level (as per CAS Sheet)	Exp 1	Exp 2	Exp 3	Exp 4	Exp 5	Exp 6	Exp 7	Exp 8	Avg
Task I	15	15	15	15	15	15	15	15	15
Task II	05	05	05	05	05	05	05	05	05
Task III	05	05	05	05	05	05	05	05	05
CA/TA	25	25	25	25	25	25	25	25	25

		Govern	ment College of 1	Engineering,	Karad	
			(Sem – VII) B. 7	<u> </u>		
	(CE 2737 : (Elective				
Laboratory				_		ion Scheme:
Practical		2Hrs/week			CA	25
Total Cred	its	1				
Course Ou						
Students w		t tests to determine be	th the index and er	ngineering prop	arties of so	ile.
				0 01 1		
2						to solve problems in the field
	of mod	ification of ground re	Course Co		ineering sti	ructures.
Experimen	t 1	Tri-axial compression		intents		
_		<u>^</u>		. 1 . 1 . 1	1	
Experimen		Study the effect of I		on stabilized soi	1.	
Experimen		Modified Proctor Te	st			
Experimen		Plate Load Test				
Experimen		Primary and Second	7			
Experimen		Collection of variou			d its suitab	oility
Experimen	t 7	Grab Tensile Streng	h of Geotextile ma	terial		
Experimen	t 8	Grout Consistency				
Experimen	t 9	Fibre Content test for	r shotcrete using w	ashout method		
Experimen	t 10	Flexural Toughness	test for Shotcrete			
Experimen	t 11	Site Visit 1				
Experimen	t 12	Site Visit 2				
List of Sub	mission:					
		Submission of condu	cted experiments			
		Site Visit Report				

$PO \rightarrow$	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 6	PO 8	PO 9	PO 10	PO 11	PO 12	PSO	PSO
CO↓													1	2
CO 1	3	2	2	2	1	2	1	1	2	2	1	1	1	2
CO 2	3	3	3	3	2	2	2	1	2	2	-	1	1	2

Skill Level (as per CAS Sheet)	Exp 1	Exp 2	Exp 3	Exp 4	Exp 5	Exp 6	Exp 7	Exp 8	Exp 9	Exp 10	Exp 11	Exp 12	Avg
Task I	15	15	15	15	15	15	15	15	15	15	15	15	15
Task II	05	05	05	05	05	05	05	05	05	05	05	05	05
Task III	05	05	05	05	05	05	05	05	05	05	05	05	05
CA/TA	25	25	25	25	25	25	25	25	25	25	25	25	25

									
		ollege of Engineering							
		VII) B. Tech. Civil E	0	0					
	CE 2747: (Elective III I	Lab) Industrial Waste	eTreatme	nt Lab					
Laboratory Sche			Examination Scheme:						
Practical	02 Hrs/week		CA	25					
Total Credits	01								
Course Outcome	Q*								
Students will be a									
	ne various characteristics of Industr	rial wastewater							
2 understand th	ne treatability of Industrial wastewa	ater							
3 design variou	is chemical and Biological Treatme	ent Units for Industrial w	vastewater t	reatment					
		~ ~							
		Course Contents	<u></u>						
Experiment 1	Testing of wastewater from dif	• • •)						
	[pH, BOD, COD, DO, TDS, C	_	т ('I						
	a. Sugar and Distillery Industry	b. Pulp and paper mill c	c. Textiles c	1. Tanneries					
F : (3	e. Food Processing Industry		D 1 - 1 - D	. Adamia Altar andian					
Experiment 2	Estimation of heavy metals in i	ndustrial effluent using I	Double Bea	im Atomic Absorption					
F • • • •	Spectrophotometer (AAS)	1 . • 1		1 111 •					
Experiment 3	Design of Oxidation Pond for i		1 0	5					
Experiment 4	Design of Trickling filter for In		•						
Experiment 5		-		l wastewater treatment system.					
Experiment 6	Study and Design of Common			-					
Experiment 7	Design of effluent treatment pl			n different industries (any one)					
	a. Sugar and Distillery Industry		111,						
		d Processing Industry							
Experiment 8	Visit to effluent treatment plan	t and common effluent tr	eatment pla	ant for treatment of wastewater					
	from industries.								
T:-4 - 6 C 1 · · ·									
List of Submissio	1 Total number of Experiments-	7							
	2 Industrial Visit Report – 02	JI							
·	- mausului visit Kepolt 02								

$PO \rightarrow$	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 6	PO 8	PO 9	PO 10	PO 11	PO 12	PSO	PSO
CO↓													1	2
CO 1	3	1	1	1	1	2	3	1	-	2	-	1	3	3
CO 2	1	2	1	1	1	2	3	1	-	2	-	1	3	3
CO 3	1	1	3	2	2	2	3	1	1	-	-	1	3	3
		1: Slight (Low)			2: Moderate (Medium)			3: Substantial (High)						

Skill Level (as per CAS Sheet)	Exp 1	Exp 2	Exp 3	Exp 4	Exp 5	Exp 6	Exp 7	Exp 8	Exp 9	Exp 10	Avg
Task I	15	15	15	15	15	15	15	15	15	15	15
Task II	05	05	05	05	05	05	05	05	05	05	05
Task III	05	05	05	05	05	05	05	05	05	05	05
CA/TA	25	25	25	25	25	25	25	25	25	25	25

	Gover	nment College of Engineerin	g, Karad	
	Final Yea	r (Sem – VII) B. Tech. Civil	Engineering	5
	CE 2757 : (Elective	III Lab)Analysis of Indeterr	ninate Struc	ctures Lab
Laboratory School			Examinat	ion Scheme:
Practical	2 Hrs/week		CA	25
Total Credits	1			
Course Outcome				
Students will be				
		blems in structural analysis.		
		e of structures under different loa	ding condition	ns.
	-	res and make necessary inference	-	
- r		Course Contents	1	0
Experiment 1	Examples on Castigli	one's theorem and unit load meth	nod for statica	ally indeterminate beam,
Experiment 2	Examples on analysi	s of truss (lack of fit and temp	erature variat	ion effect) and two hinged
-	parabolic arch with s	upports at same level.(Degree of	S.I. ≤ 2).	
Experiment 3		s of beams, sinking of supports, j	portal frames	with sway and non sway by
F 4 4	using slope deflection		n antal fuanta a	with among and many among her
Experiment 4	using modified slop	s of beams, sinking of supports,	portal frames	with sway and now sway by
Experiment 5		s of beams, sinking of supports,	nortal frames	with sway by using moment
Experiment 5	distributed method.	, or beams, shiking or supports, j	portar mariles	with sway by using moment
Experiment 6	Examples on analysi	s of beams, sinking of supports	s, portal fram	es with non sway by using
	moment distributed n			
Experiment 7		s of beam, beam with different fl	exural rigidity	y by using Clapeyeron's three
	moment theorem			
Experiment 8	· ·	of beam with sinking of suppor	t by using Cla	peyeron's three moment
T	theorem	a 11.11. co	1.1	1
Experiment 9	-	op flexibility coefficient matrix,	problems on a	analysis of beams and portal
E • 410	frames by using flexi	•		-1
Experiment 10		op stiffness coefficient matrix, p	roblems on an	alysis of beams and portal
Even owiers and 11	frames by using stiff		malas an ata	no factor plastic section
Experiment 11	modulus for beam.	sis of steel structures, and its exa	amples on sha	pe factor, plastic section
Exponiment 12		ion of upper and lower bound the	hooroma and a	vemples on plastic enclusio
Experiment 12	of beams.	ion of upper and lower bound th	neorems and e	examples on plastic analysis
List of Cubmissi		narimanta: 12		
List of Submissi	on: Total number of ex	periments:- 12		

$PO \rightarrow$	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 6	PO 8	PO 9	PO 10	PO 11	PO 12	PSO	PSO
CO↓													1	2
CO 1	2	3	1	2	3	1	1	1	-	3	1	1	2	2
CO 2	2	2	1	2	-	1	-	1	-	3	2	3	2	2
CO 3	2	2	1	2	-	1	2	2	-	3	2	2	2	2

Skill Level (as per CAS Sheet)	Exp 1	Exp 2	Exp 3	Exp 4	Exp 5	Exp 6	Exp 7	Exp 8	Exp 9	Exp 10	Exp 11	Exp 12	Avg
Task I	15	15	15	15	15	15	15	15	15	15	15	15	15
Task II	05	05	05	05	05	05	05	05	05	05	05	05	05
Task III	05	05	05	05	05	05	05	05	05	05	05	05	05
CA	25	25	25	25	25	25	25	25	25	25	25	25	25

		Government C	ollege of Engineering	, Karad	
		Final Year (Sem –	VIII) B. Tech. Civil F	Engineerin	g
		CE2708 :Struc	tural Design and Dra	wing II	
Laboratory	y Scheme:			Examinat	ion Scheme:
Practical		4 Hrs/week		CA	25
Total Cred	its	2		ESE	25
Course Ou	tcomes:				
Students w		to:			
1	understar	nd various members of struc members.	tures, various design phil	osophies an	d connections between the
2	fulfil the	requirements of the client.			tructure as per IS code which
3	create rep	ports and detailing of steel st	ructures as per the client	requiremen	t to execute structure on the
	site.				
		(Course Contents		
Experimen	t 1 F	Residential four (G+3) storie	d building (Minimum 12	0 Sq.m) Dra	wings prepared shall indicate
	ć	luctility details as per the pro-	ovision in IS: 13920.		
Experimen	it 2 A	Any one of following:			
	ŀ	Retaining wall (cantilever or	counter fort type)		
	Ι	Design of combined footing			
	Ι	Design of water tank resting	on ground.		
Experimen	it 3 A	Analysis and design of RCC	framed structure using st	ructural eng	ineering software
List of Sub	mission:				
			eets indicating all detailir sheet for 2 and 3 experin		ral members

$PO \rightarrow CO \downarrow$	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 6	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2
CO 1														
CO 2														
CO 3														
CO 4														

Knowledge Level	CT 1	CT 2	TA	ESE
Remember				
Understand				
Apply				
Analyse				
Evaluate				
Create				
TOTAL				

		lege of Engineering, Karad	
	Final Year (Sem – V	(II) B. Tech. Civil Engineering	
	CE	2709 :Seminar	
Scheme:		Examination	Scheme:
Tutorial	1 Hrs/week	ТА	25
Total Credits	01	ESE	25
Course Outcomes:			
	tudents will be able to:		
	knowledge that they gain from	curriculum	
	pretical knowledge to practica		
	erbal and written presentation	· · · · ·	
	*	ourse Contents	
•	ar may be related to Civil Eng	ineering field such as –	
1. Structural Engineeri	0		
2. Concrete Technolog	-		
3. Environmental Engi	0		
4. Geotechnical Engine	-		
5. Transportation Eng	U		
6. Infrastructural Engin	U		
7. Water Resources En	0 0		
8. Town & Country Pla	0		
9. Construction Engine	•		
	te Sensing Techniques		
11. Project Manageme			
12. Legal Aspects in C	0		
 13. Earthquake Engine 14. Disaster Managem 	6		
15. Repairs and Rehab			
16. Engineering Geolo	-		
17. IT Applications to			
		and advances in civil engineering	
List of Submission:	subject to recent development		
List of Subilission:	Technical report in prescribed	format as decided by guide	
T	resented report in presented	Tormat as accraca by guide	

$PO \rightarrow$	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 6	PO 8	PO 9	PO 10	PO 11	PO 12	PSO	PSO
CO↓													1	2
CO 1	1	2	1	-	2	2	2	1	1	-	2	1	1	-
CO 2	-	1	-	1	-	1	-	-	-	1	-	-	2	2
CO 3	2	-	2	2	3	-	-	2	2	2	2	2	-	1
CO 4	-	-	-	-	-	2	2	-	-	-	-	-	-	-

Knowledge Level	CA	ESE
Remember	10	10
Understand	10	10
Apply	05	05
Analyse	-	-
Evaluate	-	-
Create	-	-
TOTAL	25	25

	Go	vernment College of Enginee	ring, Karad		
	Final	Year (Sem – VII) B. Tech Civ	vil Engineering		
		CE 2710: Industrial Trai	ning		
Teaching Sche	ne			nation Scheme	
Tutorial	01 Hr/week		CA		50
Total Credits	01		ТОТА	L	50
Course Outcom	nes (CO)				
Students will1.possess word	k responsibly and othic	in their working environment.			
		ed activities, communication and	will get basics of sit	te knowledge	
U U		nentation in Civil Engineering.	will get basies of sit	te knowledge.	
		solving industrial/field challenge	s.		
		COURSE CONTEN	ГS		
Stude	nts need to choose the ri	ght area of Civil Engineering out		line,	
	Construction Work.				
	Planning and Design.				
3.					
4.	5				
	Investigations. Management.				
		ective authority/company throug	h proper communic	cation channel to	obtain
		thority/company and undergo			
outco			8		0
		PERIOD OF ACTIVI			
		e after Semester VI (Third Year)			
		devote 90-100 man-hours (@ 20	days) distributed (over the vacation	s since
comp	etion of Third Year B.	ech, Civil Engineering Program.			
	DFD	ORTING AND SUBMISSION	DEULIDEMENT		
At the		, the student must submit a repo		d on the area the	v have
		lfilment. The report must be a			
		tographs, videos and day wise fie			
1.	Communication Reco	rds.			
2.	U				
3.	1				
4.	•	Paquiramanta			
	Laboratories and Cos Details of billing syst	-			
7.					
		npany/Organization/Firm Stating	Attendance. Satis	sfactory Complet	ion of
	Work Assigned.		,	J	-
9.	Feedback by Employ	r.			
). Report Consisting of				
	. Study/Work Carried				
12	2. Observations and Out	comes.			
		ASSESMENT PATTERN FO	DR CA/TA		
Stude	nt must submit finalised	report at the end of the semester			
Stude	nts have to present his/h	er work to panel of internal examination	ner for evaluation of	of CA/TA as per r	ubrics.

$PO \rightarrow CO \downarrow$	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2
CO 1	-	-	-	-	3	-	3	-	-	-	-	2	3	-
CO 2	-	-	-	-	-	3	-	-	-	3	-	-	-	-
CO 3	-	-	-	-	-	-	-	-	-	-	3	-	-	3
CO 4	3	3	3	3	-	-	-	3	-	-	-	-	-	-
1: Sli	ght (I	Low)		2:	Mode	rate (Medi	um)		3: 5	Subst	antial	(High	1)

Knowledge Level	CA/TA
Remember	10
Understand	10
Apply	10
Analyse	10
Evaluate	10
Create	00
TOTAL	50

Government College of Engineering, Karad	
Final Year (Sem – VII) B. Tech. Civil Engineering	
CE2701: Construction Management	
Teaching Scheme Examination Scheme	e
Lectures 3 Hrs/week CT – 1 15	
Tutorials - CT - 2 15	5
Total Credits 03 TA 10	0
ESE 60	0
Duration of ESE 02	2 Hrs 30 Min
Course Outcomes (CO)	
At the end of course students will be able to	
1. identify planning tools of project management	
2. understand risk management aspects of construction projects	
3. use knowledge of safety engineering in construction projects	
4. apply quality management tools to construction projects	
Course Contents	Hours
Unit 1 Project Management: Objectives, agencies, phase. Project planning, work breakdown structure.	. Bar (05)
chart and mile stone chart. Difference between project management and construction management	nt
Unit 2 Critical Path Method (CPM): Network development, time estimates, floats, critical path. Netw	work (10)
compression, resource allocation and network updating	
Unit 3 Program Evaluation and Review Technique (PERT): Time estimates, slack, expected durat	ation, (05)
probability of project completion	
Unit 4 Risk Management in Construction Projects: Types of risks, Risk identification, analysis	
mitigation, Risk reduction, avoidance and acceptance. Simulation, Decision Tree and Sensiti	tivity
analysis, occupational hazards.	
Unit 5 Safety Engineering: Importance of safety, classification of accidents, causes of accidents, sa	afety (06)
policy, safety plan, safety training, various safety equipment used on site, occupational hazards.	
Safety codes related to construction work.	valitzy (07)
Unit 6 Quality Management: Statistical quality control, control charts, sampling techniques. Total quality management Quality simples Quality Aggurance (QCQA)	uality (07)
management, Quality circles, Quality Assurance (QCQA). Text Books	
1. K. K. Chitkara, "Construction Project Management", 3rd Edition, 2005	
 K. K. Chitkara, Construction Project Management, 3rd Edition, 2005 Grey, Larson & Desai, "Project Management", 4th Edition, Tata Mcgrow Hill Publications 	
 Grey, Earson & Desai, Project Management, 4 Edition, Tata Megrow Hill Publications Construction Safety Manual Published by National Safety Commission of India 	
 4. Jhamb, "Quantitative Techniques" Volume II, 	
A. Shamb, Quantitative rechniques volume II, Reference Books	
1. S. Seetharaman, "Construction Engineering and Management", 2nd edition, 2000	
 S. Seenarahan, Construction Engineering and Management , 2nd edition, 2000 Antil&Woodhead, "Critical Path Methods in Construction" 	
 Safety Management in Construction Industry – A Manual for Project Managers by NICMAR, Mumba 	ai
 Safety Management in Construction industry – A Manual for Project Managers by INCMAR, Multibal RAMP – Risk Analysis and Management of Projects by Institution of Civil Engineers and the Facult 	
of Actuaries, Thomas Telford Publication, London	ity of institute
 5. Concerned ISI for Safety in Construction – Bureau of Indian Standard 	
Useful Links	
1. https://swayam.gov.in	I
1. Inteps://swayani.gov.in 2. https://nptel.ac.in	
3. https://www.youtube.com/user/nptelhrd	
4. https://online.stanford.edu	
5. https://www.mooc-list.com/tags/civil-engineering	

I	$PO \rightarrow$	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 6	PO 8	PO 9	PO 10	PO 11	PO 12	PSO	PSO
(CO↓													1	2
(CO 1	1	3	1	2	1	1	1	2	-	1	1	1	1	2
(CO 2	2	3	2	2	2	1	1	2	3	3	3	2	1	2
(CO 3	3	3	3	3	3	2	-	-	-	2	3	3	1	2
(CO 4	3	3	3	3	2	1	1	3	3	3	3	3	1	2

Knowledge Level	CT 1	CT 2	TA	ESE
Remember	5	-	2	12
Understand	5	5	2	12
Apply	5	5	2	12
Analyse	-	5	2	12
Evaluate	-	-	2	12
Create	-	-	-	-
TOTAL	15	15	10	60

			Government C	ollege of Enginee	ering, Kara	ıd		
		I	Final Year (Sem –	VIII) B. Tech. C	ivil Engine	ering		
		CE2811: (C) pen Elective V) N	ATLAB Applica	ations in C	ivil Engineering		
Teachin	g Schei					Examination Sch	eme	
Lectures		3Hrs/week				CT – 1	15	
Tutorials		-				CT – 2	15	
Total Cr	edits	3				ТА	10	
ļ						ESE	60	
ļ						Duration of ESE	02 Hrs	30 Min
		nes (CO)						
Students								
			nd numerical analysi					
			ATLAB programmin	6				
			in various streams o		using MAT	LAB		
4. unde	erstand	future trends in	MATLAB applicati					**
TT •4 1	Tred and all			Course Contents		NT	E: 11	Hours
Unit 1			TLAB Numerical		ientais &	Numerical analysis	s, Field	(06)
Unit 2			imental investigation niques, Basic program		ations Dlatt	ing 2D 2D		(06)
Unit 2 Unit 3			g Structural Engine				h using	(00)
Omt 5	MAT		g Suuctural Englie	ering problems an	u montorn	ig Structural fiear	li using	(00)
			Hydraulic Engineeri	ng problems using N	MATLAB			
Unit 4			Geotechnical Engine			3		(06)
			tion monitoring & c					(00)
Unit 5			Surveying & Enviro			using MATLAB		(06)
Unit 6			LAB applications, C					(06)
Text Bo	oks		• • · · · ·	•				
1. Fau	isett L.V	V. (2007) Appli	ed Numerical Analys	sis Using MATLAB	8, 2nd Ed., P	earson Education		
Referen	ce Bool	ks						
1. Cha	apra S.C	C. and Canale R	.P. (2006) Numerica	l Methods for Engir	neers, 5th Ed	., McGraw Hill		
Useful L	Links							
			.ac.in/noc20_ge05/p					
	11 .	1 • /	105/106/105106151	1				
2. <u>http</u>	os://npte	el.ac.in/courses/	105/100/105100151					

$PO \rightarrow$	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 6	PO 8	PO 9	PO 10	PO 11	PO 12	PSO	PSO
CO↓													1	2
CO 1	1	1	2	1	1	-	-	-	-	-	-	1	1	1
CO 2	2	1	2	1	2	-	-	-	-	-	-	1	2	1
CO 3	1	2	2	1	2	1	-	-	-	-	-	1	1	1
CO 4	2	1	1	-	-	-	1	-	-	-	-	2	1	1

Knowledge Level	CT 1	CT 2	TA	ESE
Remember	2	-	2	10
Understand	5	-	2	10
Apply	5	5	2	15
Analyse	3	5	2	10
Evaluate	-	5	2	15
Create	-	-	-	-
TOTAL	15	15	10	60

			Government College	<u> </u>				
			inal Year (Sem – VIII)			<u> </u>		
		C	E2812: (Elective V) Adva	anced Engin	neering G	eology		
	hing Sche					Examination Sch		
Lectu		3 Hrs/week				<u>CT - 1</u>	15	
Tuto		-				<u>CT - 2</u>	15	
Tota	Credits	3				TA	10	
						ESE	60	20.15
C	0.1					Duration of ESE	02 Hrs	30 Min
	rse Outco	· · · · ·						
	ents will b							
			nowledge of tectonic activiti				•	
			ge of the preliminary geolog	U		<u> </u>	jects	
3. (levelop sk	ills to apply geor	physical methods for geolog	ical investigat	tion of civi	l engineering sites.		
			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<u> </u>				**
<b>TT</b> • /	4 DL (			Contents				Hours
Unit		Tectonics and		11 / 1		· · ,· ·,	1 .	(06)
			oncept of plate tectonics co				lcanism	
			y plate tectonics. Lineamen					
			a, seismic activity of Decca		, Reservoir	Induced Seismicit	y (RIS),	
TT •4	-		smic activity of Deccan trap	U				
Unit	0100		ation to Engineering Work					(06)
			vater bearing capacity of co					
			vil engineering, saline wate				tematic	
			tion. Occurrence of ground					
			sts: approach and utility,			ace water in eng	ineering	
		ructions, case stu	idy on ground water problem	ns and its solu	ution			
Unit	3 Appl	ication of Rock	<b>Mechanics in Engineering</b>	5				(06)
	Intro	duction, relevand	e of rock mechanics in eval	uating rock ar	nd rock ma	ss properties, meas	urement	
			ock, elastic properties of re					
		0	ss properties, introduction to			U	,	
Unit	4 Site	Investigation						(06)
	Intro	duction, differen	t stages of site investigation	on, aerial pho	otography	interpretation and	satellite	
			physical exploration, subso					
			xploratory drilling in rocks.					
Unit			considerations for:	0 0				(08)
	0	0 0	omorphology and geology i	in the design a	of a dam a	adverse effects of f	aults in	× /
			ts treatment, causative facto					
		tion of a dam site					on and	
			azards in tunneling					
		-	nd foundations of bridge	os different	aspects (	of engineering ge	ological	
			lge site, locating a bridge at			0 0 0	0	
			ion in subsoil in relation to					
		apsed bridge			ing, cuse s	dudies on ondges n	iciuuing	
Unit		ral Hazard: La	ndslide					(07)
Om			of landslides, landslide	tyme: aloggif	ination on	d description any	and of	( <b>0</b> )
			on of areas affected by la					
			andslide Hazard Mitigation,					
			dslides in India, case study	·		-	JLOP),	
Toyt	Books	ices of major fail	distides in fildra, case study		III IIIuIa III	Teceni pasi		
		ah 'Enginaarin	g & General Geology' S.K.k	Cataria and Sa	ng 1007			
		<u> </u>	ering Geology' Oxford Univ					
			ook of Engineering Geology			2012		
			ook of Engineering Geolog	y, Laxiii Pub	meations, 2	2013		
	rence Boo		Hudualaan? Laha W7!1 0	Sama 1002				
			Hydrology', John Wiley &		adamia 0 1	Durafaggianal Class	0. TT	11 Diant
			ons of Engineering Geology	, влаские Аса	ademic &	rolessional, Chapr	nan & Ha	ui, first
	Edition, 1		- AFE and the second second		··· (D0	Dublish and the	6	2002
			s of Engineering Geology and		28,085	r uonsners and Dist	unoutors.,	2003
4.	IVI.B.B1111	igs, Structural (	Geology', Prentice Hall, INC	. 1901				

Use	Useful Links										
1.	http://nptel.ac.in/courses/105105106/Dr. DebasisRoy IIT Kharagpu	ır									
2.	http://nptel.ac.in/courses/105104152/Prof. Javed N. Malik IIT Kan	pur									
3.	http://nptel.ac.in/courses/105104156/Prof. Javed N. Malik IIT Kan	pur									

$PO \rightarrow$	<b>PO</b> 1	PO 2	PO 3	PO 4	PO 5	PO 6	<b>PO</b> 7	PO 8	PO 9	<b>PO</b> 10	PO 11	PO 12	PSO	PSO
CO↓													1	2
CO 1	1	1	1	1	1	2	1	-	-	-	-	1	1	1
CO 2	1	1	1	1	2	2	1	-	-	-	-	1	2	1
CO 3	1	2	1	1	1	2	1	-	-	-	-	1	2	1

Knowledge Level	CT 1	CT 2	TA	ESE
Remember	5	5	3	15
Understand	5	5	3	15
Apply	5	5	3	15
Analyse	-	-	1	15
Evaluate	-	-	-	-
Create	-	-	-	-
TOTAL	15	15	10	60

				Govern	ment College of	Enginee	ring, Kara	ad		
				Final Year	(Sem – VIII) B.	Tech. Ci	vil Engine	eering		
			<b>CE282</b>	2: (Elective	V) Professional	l Practice	es in Civil	Engineering	<u>z</u>	
Tea	ching	g Schem	e					Examinatio	on Scheme	
Lect	tures		3 Hrs/week					CT – 1	15	
Tuto	orials		-					CT – 2	15	
Tota	al Cre	dits	3					ТА	10	
								ESE	60	
								Duration of	ESE 02 Hrs	30 Min
Cou	irse (	Outcom	es (CO)						•	
Stu	dent	will abl	e to							
1.	desci	ibe fund	ctioning/work	ting of differe	nt types of industr	ries/sectors	s in Civil Er	ngineering.		
2.	desci	ibe drav	vings and doc	cuments requi	red and used in di	fferent Civ	vil Engineer	ring works.		
3.	unde	rstand tl	ne importance	e of Code, Ac	ts, Laws and Ethi	cs to be pi	acticed by a	a Civil Engine	eer and also und	derstand
				ties as a Civil						
4.	unde	rstand d	ifferent health	h and safety p	ractices on the site	e.				
					Course C					Hours
Uni	it 1				nistration contra					(07)
					d parties, Indian				egulation and	
					, Sale of Goods A					
Uni	it 2				Arbitration Act,		U			(06)
					Rules of Evidence	e, Preparat	ion and pub	olication of av	vard, Methods	
				ending and Av	wards.					(0=)
Uni	it 3		ngs and Docu					1		(07)
					construction proje	ects. Conti	act agreem	ent & other	documents in	
			nt construction		a Industrial Discu	uta Ast D	······	and Antoned	Child Labour	
		Act.	rial Act and	Labour Law	s- Industrial Disp	ule Aci, Pa	ayment of w	vages Act and	Child Labour	
Uni	+ 1		ering Ethics							(07)
UIII	IL 4				oral dilemmas. C	ode of et	hice in Civi	il Engineerin	r followed by	(07)
					ent Council (CID			<u> </u>		
					es (Minimum 1 ca				a associations	
Uni	it 5		uction Site S				)•			(06)
UII				•	ent health and saf	fety param	eters durin	g actual exec	ution of Civil	(00)
					measures: conver			8		
Uni	it 6		s in Civil Eng							(07)
-					lisciplines in Civi	il Enginee	ring along	with the foll	owing details:	
					India & abroad,					
					g research in the c					
		as priva	ate sector.	-	-	-		-		
Ref		e Book								
1.					tice",Prentice Hal					
2.			"Legal Aspe	ets of buildin	ng and Engineerir	ng Contrac	ets", Orient	Blackswan F	rivate Ltd; 6 th	edition,
	201									
3.	В.	S. Patil,	"Indian arbit	ration Act", 6	th Edition, 1996					
4.			ract Act,1872							
5.	Safe	ty Engi	neering, Govt	t. of India Pub	licaiton,2020					
	ful T	inks								
Use					/syllabus/1051020					

$PO \rightarrow$	<b>PO</b> 1	<b>PO 2</b>	PO 3	PO 4	PO 5	PO 6	<b>PO 7</b>	PO 8	PO 9	<b>PO</b> 10	PO 11	PO 12	PSO	PSO
CO↓													1	2
CO 1	2	1	1	2	2	1	-	2	-	-	-	1	3	2
CO 2	2	1	2	1	2	-	-	1	-	-	-	1	2	3
CO 3	1	1	-	1	-	2	-	3	-	-	-	1	2	3
CO 4	2	-	-	-	2	3	-	1	-	-	-	1	3	2

Knowledge Level	<b>CT</b> 1	<b>CT 2</b>	TA	ESE
Remember	5	5	2	18
Understand	4	4	5	17
Apply	1	1	2	10
Analyse	3	3	1	07
Evaluate	2	2	1	08
Create	-	-	-	-
TOTAL	15	15	10	60

Final Year (Sem – VIII) B, Tech, Civil Engineering           CE2832: (Elective V) Traffic Engineering           Celestive V) Traffic Engineering           Course Statement Volume V			Government College of	f Engineering, Kara	d		
CE2832: (Elective V) Traffic Engineering           Teaching Scheme         Examination Scheme           Lectures         3 Hrx/week         CT - 1         15           Tutorials         03         TA         10           Total Credits         03         TA         10           Course Outcomes (CO)         FSF         60           At the cnd of course students will able to         ESF         60           L         Identify traffic characteristics and its components, factors affecting road traffic.         2           2.         understand traffic characteristics and studes.         3           3.         perform various types of traffic surveys, data collection, analysis, inference and presentation         4.           4.         evaluate various modes of Mass Transportation like Bus and Rail and its Planning and Management         Characteristics, Projectical characteristics. Vision eq. Movement peripheral vision. Visual attention, visual attention, statistical characteristics. Vision eq. Movement peripheral vision. Visual attention, graditily sensation, direction - minimum turning radius, off tracking, sip angle.         (bit)           Unit 3.         Traffic characteristics. Vision eq. Movement peripheral vision. Management Cost effective management and Travel demand management. Consection Management Cost effective management and Travel demand management. Consection Management Cost effective management and Travel demand management. Consection Management Cost effective management a		K	'inal Year (Sem – VIII) B	. Tech. Civil Engine	ering		
Lectures         Stheme         Examination Scheme           Lectures         3 Hrs/week         CT - 1         15           Tatorials         0 Hrs/week         CT - 2         15           Total Credits         03         TA         10           Total Credits         03         TA         10           Course Outcomes (CO)         Duration of ESE         02 Hrs 30 Mir           At the end of course students will able to							
Lectures         3 Hrs/week         CT - 1         15           Tutorials         0 Hrs/week         CT - 2         15           Total Credits         03         TA         10           ESE         60         Duration of ESE         02 Hrs 30 Mir           At the end of course students will able to         1.         Identify traffic characteristics and its components, factors affecting road traffic.         1           1         identify traffic characteristics, add its components, factors affecting road traffic.         1         1           2.         understand traffic movements and speed studies.         3         perform various types of traffic surveys, data collection, analysis, inference and presentation         4.           4.         evaluate various modes of Mass Transportation like Bus and Rail and its Planning and Management         1000           Unit 1         Traffic Characteristics Traffic characteristics - Road user characteristics, Busical characteristics - Road user characteristics, Jourse of the More tractor in response, Theory of PIEV modifying factors, conditional response; Vehicular (6)           Unit 3         Traffic Engineering & Speed Analysis Introduction, Speed Studies, journey time and delay studies, stampling in traffic studies & application, Traffic surveys-types of volume count Planning, Problems on PCU, moving observer method and spot speed. Traffic operation and management focs effective management measures, Traffic characteristic, Groupset, Traffic operation and Atheadels Calibration and Appl				0 0	,		
Tutorials         0 Hrs/week         CT - 2         15           Total Credits         0.3         TA         10           ESE         60         Duration of ESE         02 Hrs 30 Mir           Course Outcomes (CO)         At the end of course students will able to         Image: Course Outcomes (CO)           At the end of course students will able to         Image: Course Outcomes (CO)         Image: Course Outcomes (CO)           At the end of course students will able to         Image: Course Outcomes (CO)         Image: Course Outcomes (CO)           Image: Course Outcomes (CO)         Course Contents         Image: Course Outcomes (CO)         Image: Course Outcomes (CO)           Image: Course Outcomes (CO)         Course Contents         Image: Course Outcomes (CO)         Image: Course Outcomes (CO)           Image: Course Outcomes (CO)         Course Contents         Image: Course Outcomes (CO)         Image: Course Outcomes (CO)           Image: Course Outcomes (CO)         Course Outcome (Course Outcomes (CO)         Image: Course Outcome (CO)         Image: Course Course (Course (Course Course (Course Course (Course (Cours), Advanced (Course (Course (Cours), Advanced (Course (Course (Co	Teachin	g Scheme			<b>Examination Sch</b>	eme	
Total Credits         03         TA         10           ESE         03         ESE         60           Duration of ESE         02 Hrs 30 Mir           At the end of course students will able to         0         0           1.         identify traffic characteristics and is components, factors affecting road traffic.         0           2.         understand traffic movements and speed studies.         0         0           3.         perform various types of traffic surveys, data collection, analysis, inference and presentation         0           4.         evaluate various modes of Mass Transportation like Bus and Rail and its Planning and Management         0           Course Students with old in the surveys, data collection, analysis, inference and presentation.         (6)           Visual sensitivity to light and colour, glare Vision and recovery perception of space. Hearing, Stability sensation, Visual attention, Visual transportation systems, space down of the structure covery perception of space. Hearing, Stability sensation, Wisual attention, Visual	Lectures	3 Hrs/week			CT – 1	15	
ESE         60           Ourse Outcomes (CO)         At the end of course students will able to         1           At the end of course students will able to         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1	Tutorials	s 0 Hrs/week			CT – 2	15	
Course Outcomes (CO)         Duration of ESE         02 Hrs 30 Mir           At the end of course students will able to         1.         identify traffic characteristics and its components, factors affecting road traffic.         1.           2.         understand traffic movements and speed studies.         3.         perform various types of traffic surveys, data collection, analysis, inference and presentation         4.           4.         evaluate various modes of Mass Transportation like Bus and Rail and its Planning and Management         6.           Unit 1         Traffic Characteristics Traffic characteristics - Road user characteristics, General human characteristics, Physical characteristics. Vision eye – Movement peripheral vision, Visual attention, Visual astenitivity to light and colour, glare vision and recovery perception of space. Hearing, Stability sensation.         (6)           Unit 2         Time factor in response, Theory of PIEV modifying factors, conditional responses; Vehicular Characteristics +ypes, dimensions, resistance, power requirement for different resistance, change in direction -minimum turning radius, off tracking, slip angle         (8)           Unit 3         Traffic Engineering & Speed Analysis Introduction, Speed studies, journey time and delay studies, Sampling in traffic studies & application, Traffic surveys-types of volume count Planning, Problems on PCU, moving observer method and spot speed. Traffic operation and management. Traffic Sign and Road marking         (7)           Unit 4         Trip Generation and Distribution: Factors governing trip generation and attraction -Application of gravity model	Total Cr	edits 03			ТА	10	
Course Outcomes (CO)           Af the end of course students will able to         1           1         identify traffic characteristics and is components, factors affecting road traffic.           2.         understand traffic movements and speed studies.           3.         perform various types of traffic surveys, data collection, analysis, inference and presentation           4.         evaluate various modes of Mass Transportation like Bus and Rail and its Planning and Management           Course Contents         Hour           Unit 1         Traffic Characteristics Traffic characteristics – Road user characteristics, General human (characteristics, physical characteristics, Neos, onder course conditional responses; Vehicular Characteristics - types, dimensions, resistance, power requirement for different resistance, change in direction - minimum turning radius, off tracking, slip angle         (6)           Unit 3         Traffic Engineering & Speed Analysis Introduction, Speed studies, journey time and delay studies, Sampling in traffic studies & application, Traffic surveys-types of volume count Planning, Problems on PCU, moving observer method and spot speed. Traffic operation and management. Traffic systems management and Travel demand management. Cost effective management measures, Traffic control aids, Street furniture, Road Arboriculture-Traffic Regulation, Traffic Sign and Road marking         (6)           Unit 4         Trip Generation and Distribution: Factors governing trip generation and attraction -Application of Regression Analysis-Methods of trip distribution; Growth and Synthetic Models Calibration and Application of TR3-1TS D							
At the end of course students will able to         1.       identify traffic characteristics and its components, factors affecting road traffic.         2.       understand traffic movements and speed studies.         3.       perform various types of traffic surveys, data collection, analysis, inference and presentation         4.       evaluate various modes of Mass Transportation like Bus and Rail and its Planning and Management         Course Contents       Hour         1       Traffic Characteristics Traffic characteristics - Road user characteristics. General human       (6)         characteristics - Physical characteristics on eye – Movement peripheral vision, Visual attention, Visual sensitivity to light and colour, glare vision and recovery perception of space. Hearing, Stability sensation.       (6)         Unit 2       Traffic Engineering & Speed Analysis Introduction, Speed studies, journey time and delay studies, Sampling in traffic studies & application, Traffic spration and management. Traffic systems management method and spot speed. Traffic operation and management. Traffic systems management measures, Traffic control aids, Street fumiture, Road Arboriculture - Traffic Regulation, Traffic Sign and Road marking       (6)         Unit 4       Trip Generation and Distribution: Factors governing trip generation and attraction - Application of Application and Application and Application of gravity model. Category analysis       (7)         Background, Benefits of ITS - SITS Data collection techniques -Detectors, Automatic vehicle location (AVI), Geographic Information Systems (AVCS), Advanced trable for Bras					Duration of ESE	02 Hrs	30 Min
I.       identify traffic characteristics and its components, factors affecting road traffic.         2.       understand traffic movements and speed studies.         3.       perform various types of traffic surveys, data collection, analysis, inference and presentation         4.       evaluate various modes of Mass Transportation like Bus and Rail and its Planning and Management Course Contents       Hour         10111       Traffic Characteristics Traffic characteristics. Nision eye – Movement peripheral vision, Visual attention, Visual sensitivity to light and colour, glare vision and recovery perception of space. Hearing, Stability sensation.       (6)         11       Time factor in response, Theory of PIEV modifying factors, conditional responses; Vehicular direction –minimum turning radius, off tracking, slip angle       (6)         11       Traffic Engineering & Speed Analysis Introduction, Speed studies, journey time and delay studies, so n PCU, moving observer method and spot speed. Traffic operation and management. Traffic systems management and Travel demand management – Congestion Ananagement. Cost effective management measures, Traffic control aids, Street furniture, Road Arboriculture–Traffic Regulation, Traffic Sign and Road marking       (7)         11       Tintoduction to Intelligent Transportation Systems (ITS) Definition, Objectives, Historical collection. Advanced traffic management systems (ITS). Advanced traveller information Systems (ATIS). Commercial vehicle dentification (AVD), Geographic Information Systems (AVCS), Advanced Public transportation systems (BRTS). Advanced vehicle control systems (ATIS). Commercial vehicle operations (CVO). Advanced vehicle control syst							
2.         understand traffic movements and speed studies.           3.         perform various types of traffic surveys, data collection, analysis, inference and presentation           4.         evaluate various modes of Mass Transportation like Bus and Rail and its Planning and Management           Course Contents         Hour           Unit 1         Traffic Characteristics Traffic characteristics. Vision eye – Movement peripheral vision, Visual attention, Visual stention, Visual attention, Visual stention, Visual visual visual stention, Visual stention, Visual stention, Visual stention, Visual visu							
3.       perform various types of traffic surveys, data collection, analysis, inference and presentation         4.       evaluate various modes of Mass Transportation like Bus and Rail and its Planning and Management         Course Contents       Hour         Unit 1       Traffic Characteristics Traffic characteristics. Vision eye – Movement peripheral vision, Visual attention, Visual sensitivity to light and colour, glare vision and recovery perception of space. Hearing, Stability sensation,       (6)         Unit 2       Time factor in response, Theory of PIEV modifying factors, conditional responses; Vehicular direction – minimum turning radius, off tracking, slip angle       (6)         Unit 3       Traffic Engineering & Speed Analysis Introduction, Speed studies, journey time and delay studies, systems management and Tavel demand management – Congestion Management Cost effective management measures, Traffic control aids, Street furniture, Road Arboriculture–Traffic Regulation, Traffic Sign and Road marking       (7)         Unit 5       Intellegent Transportation Systems (ITS) Definition, Objectives, Historical Galection and Application of ITS-ITS Data collection techniques – Detectors, Automatic vehicle location (AVL), Automatic Vehicle I dentification (AVI), Geographic Information Systems (GIS), Video data collection Advanced traffic management tystems (ATTS), and Advanced rural transportation systems (ATTS), Commercial vehicle operations, CVO), Advanced rural transportation Systems (ATTS), and Advanced rural transportation systems (ATTS), Commercial vehicle operations, CVO), Advance		•	<u> </u>	s affecting road traffic.			
4.       evaluate various modes of Mass Transportation like Bus and Rail and its Planning and Management       Course Contents       Hour         Unit 1       Traffic Characteristics Traffic characteristics. Noad user characteristics, General human characteristics, Physical characteristics. Vision eye – Movement peripheral vision, Visual attention, Visual sensitivity to light and colour, glare vision and recovery perception of space. Hearing, Stability sensation,       (6)         Unit 2       Time factor in response, Theory of PIEV modifying factors, conditional responses; Vehicular Characteristics -types, dimensions, resistance, power requirement for different resistance, change in direction -minimum turning radius, off racking, slip angle       (8)         Unit 3       Traffic Engineering & Speed Analysis Introduction, Speed studies, journey time and delay studies, Sampling in traffic surgent and psot speed. Traffic operation and management. Traffic systems management tradius, off racking, slip and spot speed. Traffic operation and management Traffic systems management measures, Traffic control aids, Street furniture, Road Arboriculture–Traffic Regulation, Traffic Sign and Road marking       (6)         Unit 4       Trip Generation and Distribution: Factors governing trip generation and attraction –Application of gravity modelCategory analysis       (7)         Background, Benefits of ITS - ITS Data collection techniques –Detectors, Automatic vehicle location (AVL), Automatic Vehicle Identification (AVD), Geographic Information Systems (ATS), Advanced traveller information systems (ATIS), and Advanced rural transportation systems (ATIS), Commercial vehicle operations systems (ATIS), Advanced rural transportation systems (ATIS), Commercial vehicle oper				1 1 1 0			
Course Contents         Hour           Unit 1         Traffic Characteristics Traffic characteristics –Road user characteristics, General human characteristics, Physical characteristics. 'Noison eye – Movement peripheral vision, Visual attention, Visual sensitivity to light and colour, glare vision and recovery perception of space. Hearing, Stability sensation,         (6)           Unit 2         Time factor in response, Theory of PIEV modifying factors, conditional responses; Vehicular direction –minimum turning radius, off tracking, slip angle         (6)           Unit 3         Traffic Engineering & Speed Analysis Introduction, Speed studies, journey time and delay studies, Sampling in traffic studies & application, Traffic surveys-types of volume count Planning, Problems on PCU, moving observer method and spot speed. Traffic operation and management. Cost effective management measures, Traffic control aids, Street furniture, Road Arboriculture–Traffic Regulation, Traffic Sign and Road marking         (6)           Unit 4         Trip Generation and Distribution: Factors governing trip generation and attraction –Application of Regression Analysis-Methods of trip distribution; Growth and Synthetic Models Calibration and Application of gravity modelCategory analysis         (7)           Unit 5         Introduction to Intelligent Transportation Systems (ITS) Definition, Objectives, Historical Background, Benefits of TS -ITS Data collection techniques –Detectors, Automatic vehicle location (AVL), Automatic Vehicle ledentification (AVI), Geographic Information Systems (ATIS), Commercial vehicle operations (CVO), Advanced rural transportation systems (ATIS), Commercial vehicle operations (CVO), Advanced ruratl transportand their Impact, Indian condition Bus Rapid Transit							
Unit 1       Traffic Characteristics Traffic characteristics –Road user characteristics, General human characteristics, Physical characteristics. Vision eye – Movement peripheral vision, Visual attention, Visual sensitivity to light and colour, glare vision and recovery perception of space. Hearing, Stability sensation,       (6)         Unit 2       Time factor in response, Theory of PIEV modifying factors, conditional responses; Vehicular Characteristics – types, dimensions, resistance, power requirement for different resistance, change in direction –minimum turning radius, off tracking, slip angle       (6)         Unit 3       Traffic Engineering & Speed Analysis Introduction, Speed studies, journey time and delay studies, Sampling in traffic studies & application, Traffic surveys-types of volume count Planning, Problems on PCU, moving observer method and spot speed. Traffic operation and management. Traffic systems management measures, Traffic control aids, Street furniture, Road Arboriculture–Traffic Regulation, Traffic Sign and Road marking       (6)         Unit 4       Trip Generation and Distribution: Factors governing trip generation and attraction –Application of Regression Analysis-Methods of trip distribution; Growth and Synthetic Models Calibration and Application of gravity modelCategory analysis       (7)         Background, Benefits of TIS -ITS Data collection techniques –Detectors, Automatic vehicle location (AVL), Automatic Vehicle Identification (AVI), Geographic Information Systems (ATIS), Commercial vehicle operations (CVO), Advanced traveller information systems (ATIS), Cummercial vehicle operations (CVO), Advanced traveller information systems (ATIS), Cummercial vehicle operations (BRTS)-Rapid transit rail-Metro & Mono rails         Unit 6       P	4. eval	uate various modes of	<b>A</b>		ing and Manageme	nt	**
<ul> <li>characteristics, Physical characteristics. Vision eye – Movement peripheral vision, Visual attention, Visual sensitivity to light and colour, glare vision and recovery perception of space. Hearing, Stability sensation,</li> <li>Unit 2</li> <li>Time factor in response, Theory of PIEV modifying factors, conditional responses; Vehicular Characteristics – uppes, dimensions, resistance, power requirement for different resistance, change in direction – minimum turning radius, off tracking, slip angle</li> <li>Unit 3</li> <li>Traffic Engineering &amp; Speed Analysis Introduction, Speed studies, journey time and delay studies, Sampling in traffic studies &amp; application, Traffic surveys-types of volume count Planning, Problems on PCU, moving observer method and spot speed. Traffic operation and management. Tcaffic systems management and Travel demand management – Congestion Management Cost effective management measures, Traffic control aids, Street furniture, Road Arboriculture–Traffic Regulation, Traffic Sign and Road marking</li> <li>Unit 4</li> <li>Trip Generation and Distribution: Factors governing trip generation and attraction – Application of Regression Analysis-Methods of trip distribution; Growth and Synthetic Models Calibration and Application of gravity modelCategory analysis</li> <li>Unit 5</li> <li>Introduction to Intelligent Transportation Systems (ITS) Definition, Objectives, Historical Background, Benefits of ITS -ITS Data collection techniques –Detectors, Automatic vehicle location (AVL), Automatic Vehicle Identification (AVD, Geographic Information Systems (AVCS), Advanced Public transportation systems (APTS), and Advanced true ler information systems (ATTS), Commercial vehicle operations (CVO), Advanced vehicle control systems (AVCS), Advanced Public transport systems (APTS), and Advanced true transport and their Impact, Indian condition Bus Rapid Transit Systems (BRTS)-Rapid transit rail-Metro &amp; Mono rails</li> <li>Istack John, "Urban Transport planning,</li></ul>	TT •4 1	The ff a Classe stanist			Cananal	1	
Visual sensitivity to light and colour, glare vision and recovery perception of space. Hearing, Stability sensation,       (6)         Unit 2       Time factor in response, Theory of PIEV modifying factors, conditional responses; Vehicular Characteristics -types, dimensions, resistance, power requirement for different resistance, change in direction -minimum turning radius, off tracking, slip angle       (6)         Unit 3       Traffic Engineering & Speed Analysis Introduction, Speed studies, journey time and delay studies, sampling in traffic studies & application, Traffic surveys-types of volume count Planning, Problems on PCU, moving observer method and spot speed. Traffic operation and management. Traffic Sign and Road marking       (8)         Unit 4       Trip Generation and Distribution: Factors governing trip generation and attraction -Application of Regression Analysis-Methods of trip distribution; Growth and Synthetic Models Calibration and Application of IrS -ITS Data collection techniques -Detectors, Automatic vehicle location (AVL), Automatic Vehicle Identification (AVL), Geographic Information Systems (GIS), Video data collection. Advanced traffic management systems (ATMS), Advanced traveller information Systems (ATTS).       (7)         Unit 6       Public Transportation systems (ATMS), advanced rural transportation systems (ATTS).       (7)         Indian condition Bus Rapid Transit Systems (BRTS)-Rapid transit rail-Metro & Mono rails       (7)         Transportation technology Vision-2020, Role of various modes of Mass Transport and their Impact, Indian condition Bus Rapid Transit Systems (BRTS)-Rapid transit rail-Metro & Mono rails       (7)         Text Books       1	Unit I						(6)
Stability sensation,       (6)         Unit 2       Time factor in response, Theory of PIEV modifying factors, conditional response; Vehicular Characteristics, =types, dimensions, resistance, power requirement for different resistance, change in direction -minimum turning radius, off tracking, slip angle       (6)         Unit 3       Traffic Engineering & Speed Analysis Introduction, Speed studies, journey time and delay studies, Sampling in traffic studies & application, Traffic surveys-types of volume count Planning, Problems on PCU, moving observer method and spot speed. Traffic operation and management. Traffic systems management and Travel demand management -Congestion Management Cost effective management measures, Traffic control aids, Street furniture, Road Arboriculture-Traffic Regulation, Traffic Sign and Road marking       (6)         Unit 4       Trip Generation and Distribution: Factors governing trip generation and attraction -Application of gravity modelCategory analysis       (7)         Unit 5       Introduction to Intelligent Transportation Systems (ITS) Definition, Objectives, Historical Collection, Advanced traffic management systems (ATMS), Advanced traveller information Systems (ATMS), Advanced traveller information Systems (ATIS), Commercial vehicle loperations (CVO), Advanced vehicle control systems (AVCS), Advanced Public transportation systems (ATMS), Advanced rural transportation Systems (ARTS).       (7)         Unit 6       Public Transport System History and role of Transit, Transit system and transit mode characteristics, Transportation technology Vision-2020, Role of various modes of Mass Transport and their Impact, Indian condition Bus Rapid Transit Systems (BRTS)-Rapid transit rail-Metro & Mono rails       (7)     <							
Unit 2       Time factor in response, Theory of PIEV modifying factors, conditional responses; Vehicular Characteristics -types, dimensions, resistance, power requirement for different resistance, change in direction -minimum turning radius, off tracking, slip angle       (6)         Unit 3       Traffic Engineering & Speed Analysis Introduction, Speed studies, journey time and delay studies, Sampling in traffic studies & application, Traffic operation and management Cost effective management measures, Traffic control aids, Street furniture, Road Arboriculture-Traffic Regulation, Traffic Sign and Road marking       (8)         Unit 4       Trip Generation and Distribution: Factors governing trip generation and attraction -Application of Regression Analysis-Methods of trip distribution; Growth and Synthetic Models Calibration and Application of gravity modelCategory analysis       (7)         Background, Benefits of ITS -ITS Data collection techniques -Detectors, Automatic vehicle location (AVL), Automatic Vehicle Identification (AVI), Geographic Information Systems (GIS), Video data collection. Advanced traffic management systems (ATTMS), Advanced rural transportation systems (ATTS). Commercial vehicle operations (CVO), Advanced rural transportation systems (ARTS).       (7)         Unit 6       Public Transport System History and role of Transit, Transit system and transit mode characteristics, Transportation technology Vision-2020, Role of various modes of Mass Transport and their Impact, Indian condition Bus Rapid Transport planning, Khanna Tech Publishers, 2011       (7)         Lint 4       Kadiyali L.R. Traffic Engineering and Transport planning, Khanna Tech Publishers, 2011       (7)         Linda condition Bus Rapid Tran			light and colour, glate visi	ion and recovery perc	eption of space. I	icaring,	
Characteristics -types, dimensions, resistance, power requirement for different resistance, change in direction -minimum turning radius, off tracking, slip angle       (8)         Unit 3       Traffic Engineering & Speed Analysis Introduction, Speed studies, journey time and delay studies, sampling in traffic studies & application, Traffic surveys-types of volume count Planning, Problems on PCU, moving observer method and spot speed. Traffic operation and management. Traffic systems management and Travel demand management -Congestion Management Cost effective management measures, Traffic control aids, Street furniture, Road Arboriculture-Traffic Regulation, Traffic Sign and Road marking       (6)         Unit 4       Trip Generation and Distribution: Factors governing trip generation and attraction -Application of geression Analysis-Methods of trip distribution; Growth and Synthetic Models Calibration and Application to Intelligent Transportation Systems (ITS) Definition, Objectives, Historical Background, Benefits of ITS -ITS Data collection techniques -Detectors, Automatic Vehicle location (AVL), Automatic Vehicle Identification (AVI), Geographic Information Systems (ATS), Commercial vehicle operations (CVO), Advanced traveller information systems (ATS), Advanced traffic management systems (ATTS), and Advanced rural transportation systems (ATTS).       (7)         Unit 6       Public Transport system History and role of Transit, Transit system and transit mode characteristics, Transportation technology Vision-2020, Role of various modes of Mass Transport and their Impact, Indian condition Bus Rapid Transit Systems (BRTS)-Rapid transit rail-Metro & Mono rails       (7)         1       Kadiyali L.R. Traffic Engineering and Transport planning, Khanna Tech Publishers, 2011       (7)	Unit 2		onse Theory of PIEV mod	ifving factors conditi	onal responses. V	ehicular	(6)
direction -minimum turning radius, off tracking, slip angle       (8)         Unit 3       Traffic Engineering & Speed Analysis Introduction, Speed studies, journey time and delay studies, Sampling in traffic studies & application, Traffic operation and management. Traffic systems management and Travel demand management -Congestion Management Cost effective management measures, Traffic control aids, Street furniture, Road Arboriculture-Traffic Regulation, Traffic Sign and Road marking       (6)         Unit 4       Trip Generation and Distribution: Factors governing trip generation and attraction -Application of Regression Analysis-Methods of trip distribution; Growth and Synthetic Models Calibration and Application of gravity modelCategory analysis       (7)         Unit 5       Introduction to Intelligent Transportation Systems (ITS) Definition, Objectives, Historical Background, Benefits of ITS -ITS Data collection techniques -Detectors, Automatic vehicle location (AVL), Automatic Vehicle Identification (AVI), Geographic Information Systems (AVCS), Advanced traffic management systems (ATIS), Commercial vehicle operations (CVO), Advanced rural transportation Systems (ARTS), Advanced Public transportation systems (APTS), and Advanced rural transportation systems (ARTS).       (7)         Unit 6       Public Transport System History and role of Transit, Transit system and transit mode characteristics, Transportation Bus Rapid Transit Systems (BRTS)-Rapid transit rail-Metro & Mono rails       (7)         Transportation Bus Rapid Transit Systems (BRTS)-Rapid transit rail-Metro & Mono rails       (7)         Transportation Bus Rapid Transport planning, Khanna Tech Publishers, 2011       (7)         Kadiyal	Omt 2						(0)
Unit 3       Traffic Engineering & Speed Analysis Introduction, Speed studies, journey time and delay studies, Sampling in traffic studies & application, Traffic surveys-types of volume count Planning, Problems on PCU, moving observer method and spot speed. Traffic orveys-types of volume count Planning, Problems on PCU, moving observer method and spot speed. Traffic operation and management. Traffic Sign and Road marking       (8)         Unit 4       Trip Generation and Distribution: Factors governing trip generation and attraction –Application of Regression Analysis-Methods of trip distribution; Growth and Synthetic Models Calibration and Application of gravity modelCategory analysis       (7)         Unit 5       Introduction to Intelligent Transportation Systems (ITS) Definition, Objectives, Historical Background, Benefits of ITS -ITS Data collection techniques –Detectors, Automatic Vehicle Identification (AVI), Geographic Information Systems (GIS), Video data collection. Advanced traffic management systems (ATMS), Advanced rural transportation systems (ATTS), Commercial vehicle operations (CVO), Advanced vehicle control systems (AVCS), Advanced Public transportation systems (ATTS), and Advanced rural transportation systems (ARTS).       (7)         Unit 6       Public Transport System History and role of Transit, Transit system and transit mode characteristics, Transportation technology Vision–2020, Role of various modes of Mass Transport and their Impact, Indian condition Bus Rapid Transit Systems (BRTS)-Rapid transit rail-Metro & Mono rails       (7)         1       Kadiyali L.R. Traffic Engineering and Transport planning, Khanna Tech Publishers, 2011       (7)         2.       Kadiyali L.R. Traffic Engineering and Transport planning, Khanna Tech						unge m	
Sampling in traffic studies & application, Traffic surveys-types of volume count Planning, Problems on PCU, moving observer method and spot speed. Traffic operation and management. Traffic systems management and Travel demand management -Congestion Management Cost effective management measures, Traffic control aids, Street furniture, Road Arboriculture–Traffic Regulation, Traffic Sign and Road marking         Unit 4       Trip Generation and Distribution: Factors governing trip generation and attraction -Application of Regression Analysis-Methods of trip distribution; Growth and Synthetic Models Calibration and Application of gravity modelCategory analysis       (6)         Unit 5       Introduction to Intelligent Transportation Systems (ITS) Definition, Objectives, Historical Background, Benefits of ITS -ITS Data collection techniques -Detectors, Automatic vehicle location (AVL), Automatic Vehicle Identification (AVI), Geographic Information Systems (GIS), Video data collection. Advanced traffic management systems (ATMS), Advanced rural transportation systems (ATIS), Commercial vehicle operations (CVO), Advanced rural transportation systems (ATIS).       (7)         Unit 6       Public Transport System History and role of Transit, Transit system and transit mode characteristics, Transportation Bus Rapid Transit Systems (BRTS)-Rapid transit rail-Metro & Mono rails       (7)         L       Kadiyali L.R. Traffic Engineering and Transport planning, Khanna Tech Publishers, 2011       (7)         L       Kadiyali L.R. Traffic Engineering and Transport planning, Khanna Tech Publishers, 2011       (7)         L       Kadiyali L.R. Traffic Engineering and Transport planning, Khanna Tech Publishers, 2011       (7) <td>Unit 3</td> <td></td> <th></th> <td></td> <td>ev time and delay</td> <td>studies.</td> <td>(8)</td>	Unit 3				ev time and delay	studies.	(8)
on PCU, moving observer method and spot speed. Traffic operation and management. Traffic systems management and Travel demand management -Congestion Management Cost effective management measures, Traffic control aids, Street furniture, Road Arboriculture-Traffic Regulation, Traffic Sign and Road marking         Unit 4       Trip Generation and Distribution: Factors governing trip generation and attraction -Application of Regression Analysis-Methods of trip distribution; Growth and Synthetic Models Calibration and Application of gravity modelCategory analysis       (6)         Unit 5       Introduction to Intelligent Transportation Systems (ITS) Definition, Objectives, Historical Background, Benefits of ITS -ITS Data collection techniques -Detectors, Automatic vehicle location (AVL), Automatic Vehicle Identification (AVI), Geographic Information Systems (GIS), Video data collection. Advanced traffic management systems (ATMS), Advanced traveller information systems (ATIS), Commercial vehicle operations (CVO), Advanced vehicle control systems (AXCS), Advanced Public transportation systems (APTS), and Advanced rural transportation systems (ARTS).       (7)         Unit 6       Public Transport System History and role of Transit, Transit system and transit mode characteristics, Transportation technology Vision-2020, Role of various modes of Mass Transport and their Impact, Indian condition Bus Rapid Transit Systems (BRTS)-Rapid transit rail-Metro & Mono rails       (7)         L       Kadiyali L.R. Traffic Engineering and Transport planning, Khanna Tech Publishers, 2011       (7)         L       Khanna O.P and Justo C.G; Highway Engineering, Nem Chand Publishers, 9e.       (7)         J       Donald Drew, Traffic Flow Theory Chapter	011110						(0)
management measures, Traffic control aids, Street furniture, Road Arboriculture–Traffic Regulation, Traffic Sign and Road marking       (6)         Unit 4       Trip Generation and Distribution: Factors governing trip generation and attraction – Application of Regression Analysis-Methods of trip distribution; Growth and Synthetic Models Calibration and Application of gravity modelCategory analysis       (6)         Unit 5       Introduction to Intelligent Transportation Systems (ITS) Definition, Objectives, Historical Background, Benefits of ITS -TTS Data collection techniques –Detectors, Automatic vehicle location (AVL), Automatic Vehicle Identification (AVI), Geographic Information Systems (GIS), Video data collection. Advanced traffic management systems (ATMS), Advanced traveller information Systems (ATIS), Commercial vehicle operations (CVO), Advanced rural transportation systems (ATIS), Commercial vehicle operations (CVO), Advanced rural transportation systems (ATIS).       (7)         Unit 6       Public Transport System History and role of Transit, Transit system and transit mode characteristics, Transportation technology Vision–2020, Role of various modes of Mass Transport and their Impact, Indian condition Bus Rapid Transit Systems (BRTS)-Rapid transit rail-Metro & Mono rails       (7)         1.       Kadiyali L.R. Traffic Engineering and Transport planning, Khanna Tech Publishers, 2011       2.         2.       Khanna O.P and Justo C.G; Highway Engineering, Nem Chand Publishers, 9e.       3.         3.       Donald Drew, Traffic Flow Theory Chapter 14 in Differential Equation Models, Springer, 1983       1.         Reference Books       1.       1.							
Imit 4       Traffic Sign and Road marking       (6)         Unit 4       Trip Generation and Distribution: Factors governing trip generation and attraction –Application of Regression Analysis-Methods of trip distribution; Growth and Synthetic Models Calibration and Application of gravity modelCategory analysis       (6)         Unit 5       Introduction to Intelligent Transportation Systems (ITS) Definition, Objectives, Historical (AVL), Automatic Vehicle Identification (AVI), Geographic Information Systems (GIS), Video data collection. Advanced traffic management systems (ATMS), Advanced traveller information Systems (ATIS), Commercial vehicle operations (CVO), Advanced vehicle control systems (AVCS), Advanced Public transportation systems (APTS), and Advanced rural transportation systems (ARTS).       (7)         Unit 6       Public Transport System History and role of Transit, Transit system and transit mode characteristics, Transportation technology Vision–2020, Role of various modes of Mass Transport and their Impact, Indian condition Bus Rapid Transport planning, Khanna Tech Publishers, 2011       (7)         L       Kadiyali L.R. Traffic Engineering and Transport planning, Khanna Tech Publishers, 2011       (7)         L       Kadiyali L.R. Traffic Flow Theory Chapter 14 in Differential Equation Models, Springer, 1983       1         Reference Books       1       IBlack John, "Urban Transportation Planning", Croom Helm Ltd. London, 1981       3         .       "Urban Transportation Planning", Croom Helm Ltd. London, 1981       3       3         .       Black John, "Urban Transportation Planning", C		systems management	and Travel demand manage	gement -Congestion M	lanagement Cost e	effective	
Unit 4       Trip Generation and Distribution: Factors governing trip generation and attraction –Application of Regression Analysis-Methods of trip distribution; Growth and Synthetic Models Calibration and Application of gravity modelCategory analysis       (6)         Unit 5       Introduction to Intelligent Transportation Systems (ITS) Definition, Objectives, Historical Background, Benefits of ITS -ITS Data collection techniques –Detectors, Automatic vehicle location (AVL), Automatic Vehicle Identification (AVI), Geographic Information Systems (GIS), Video data collection. Advanced traffic management systems (ATMS), Advanced traveller information Systems (AVCS), Advanced Public transportation systems (APTS), and Advanced vehicle control systems (AVCS), Advanced Public transportation systems (APTS), and Advanced rural transportation systems (ARTS).       (7)         Unit 6       Public Transport System History and role of Transit, Transit system and transit mode characteristics, Transportation technology Vision–2020, Role of various modes of Mass Transport and their Impact, Indian condition Bus Rapid Transit Systems (BRTS)-Rapid transit rail-Metro & Mono rails       (7)         1.       Kadiyali L.R. Traffic Engineering and Transport planning, Khanna Tech Publishers, 2011       (7)         2.       Khanna O.P and Justo C.G; Highway Engineering, Nem Chand Publishers, 9e.       (1)         3.       Donald Drew, Traffic Flow Theory Chapter 14 in Differential Equation Models, Springer, 1983       (2)         Reference Books       1       Unit 6       1)         1.       Black John ,"Urban Transportation Planning", Croom Helm Ltd. London, 1981       2)<		management measure	s, Traffic control aids, Street	furniture, Road Arborid	culture–Traffic Reg	gulation,	
Regression Analysis-Methods of trip distribution; Growth and Synthetic Models Calibration and Application of gravity modelCategory analysis         Unit 5       Introduction to Intelligent Transportation Systems (ITS) Definition, Objectives, Historical Background, Benefits of ITS -ITS Data collection techniques –Detectors, Automatic vehicle location (AVL), Automatic Vehicle Identification (AVI), Geographic Information Systems (GIS), Video data collection. Advanced traffic management systems (ATMS), Advanced traveller information Systems (AVCS), Advanced Public transportation systems (AVCD), Advanced vehicle control systems (AVCS), Advanced Public transportation systems (APTS), and Advanced rural transportation systems (ARTS).       (7)         Unit 6       Public Transport System History and role of Transit, Transit system and transit mode characteristics, Transportation technology Vision–2020, Role of various modes of Mass Transport and their Impact, Indian condition Bus Rapid Transit Systems (BRTS)-Rapid transit rail-Metro & Mono rails       (7)         Intext Books         Interfic Engineering and Transport planning, Khanna Tech Publishers, 2011         I. Kadiyali L.R. Traffic Engineering and Transport planning, Khanna Tech Publishers, 9e.         3. Donald Drew, Traffic Flow Theory Chapter 14 in Differential Equation Models, Springer, 1983         Reference Books         1.       Black John, "Urban Transportation Planning", Croom Helm Ltd. London, 1981         2.       "Urban Transportation Planning: General Information and Introduction to System 360", Bureau of Public Roads, Washington D.C, 1970 <t< td=""><td></td><td></td><th></th><td></td><td></td><td></td><td></td></t<>							
Application of gravity modelCategory analysis       (7)         Unit 5       Introduction to Intelligent Transportation Systems (ITS) Definition, Objectives, Historical Background, Benefits of ITS -ITS Data collection techniques —Detectors, Automatic vehicle location (AVL), Automatic Vehicle Identification (AVI), Geographic Information Systems (GIS), Video data collection. Advanced traffic management systems (ATMS), Advanced traveller information Systems (ATS), Commercial vehicle operations (CVO), Advanced vehicle control systems (AVCS), Advanced Public transportation systems (APTS), and Advanced rural transportation systems (ARTS).       (7)         Unit 6       Public Transport System History and role of Transit, Transit system and transit mode characteristics, Transportation technology Vision–2020, Role of various modes of Mass Transport and their Impact, Indian condition Bus Rapid Transport planning, Khanna Tech Publishers, 2011       (7)         L       Kadiyali L.R. Traffic Engineering and Transport planning, Khanna Tech Publishers, 2011       (7)         L       Khanna O.P and Justo C.G; Highway Engineering, Nem Chand Publishers, 9e.       (7)         3.       Donald Drew, Traffic Flow Theory Chapter 14 in Differential Equation Models, Springer, 1983       (7)         Reference Books       1       1         1.       Black John, "Urban Transportation Planning", Croom Helm Ltd. London, 1981       (7)         3.       Bruton M.J. and Hutchinson, "Introduction to Transportation Planning", 2nd edition, London, 1975       (7)         3.       Bruton M.J. and Hutchinson, "Introduction to Tr	Unit 4						(6)
Unit 5       Introduction to Intelligent Transportation Systems (ITS) Definition, Objectives, Historical Background, Benefits of ITS -ITS Data collection techniques -Detectors, Automatic vehicle location (AVL), Automatic Vehicle Identification (AVI), Geographic Information Systems (GIS), Video data collection. Advanced traffic management systems (ATMS), Advanced traveller information Systems (ATIS), Commercial vehicle operations (CVO), Advanced vehicle control systems (AVCS), Advanced Public transportation systems (APTS), and Advanced rural transportation systems (ARTS).       (7)         Unit 6       Public Transport System History and role of Transit, Transit system and transit mode characteristics, Indian condition Bus Rapid Transit Systems (BRTS)-Rapid transit rail-Metro & Mono rails       (7)         India condition Bus Rapid Transport planning, Khanna Tech Publishers, 2011       (7)         Kadiyali L.R. Traffic Engineering and Transport planning, Khanna Tech Publishers, 2011       (7)         Khanna O.P and Justo C.G; Highway Engineering, Nem Chand Publishers, 9e.       (7)         Black John, "Urban Transportation Planning", Croom Helm Ltd. London, 1981       (7)         "Urban Transportation Planning: General Information and Introduction to System 360", Bureau of Public Roads, Washington D.C, 1970       (7)         Bruton M.J. and Hutchinson, "Introduction to Transportation Planning", 2nd edition, London, 1975       (7)         Horew D.R., "Traffic Flow Theory and Control", McGraw-Hill, New York, 1968       (7)		ē .		; Growth and Syntheti	ic Models Calibrat	ion and	
<ul> <li>Background, Benefits of ITS -ITS Data collection techniques –Detectors, Automatic vehicle location (AVL), Automatic Vehicle Identification (AVI), Geographic Information Systems (GIS), Video data collection. Advanced traffic management systems (ATMS), Advanced traveller information Systems (ATIS), Commercial vehicle operations (CVO), Advanced vehicle control systems (AVCS), Advanced Public transportation systems (APTS), and Advanced rural transportation systems (ARTS).</li> <li>Unit 6</li> <li>Public Transport System History and role of Transit, Transit system and transit mode characteristics, Transportation technology Vision–2020, Role of various modes of Mass Transport and their Impact, Indian condition Bus Rapid Transit Systems (BRTS)-Rapid transit rail-Metro &amp; Mono rails</li> <li>Indian condition Bus Rapid Transport planning, Khanna Tech Publishers, 2011</li> <li>Kadiyali L.R. Traffic Engineering and Transport planning, Khanna Tech Publishers, 2011</li> <li>Khana O.P and Justo C.G; Highway Engineering, Nem Chand Publishers, 9e.</li> <li>Jonald Drew, Traffic Flow Theory Chapter 14 in Differential Equation Models, Springer, 1983</li> <li>Reference Books</li> <li>Black John, "Urban Transportation Planning", Croom Helm Ltd. London, 1981</li> <li>"Urban Transportation Planning: General Information and Introduction to System 360", Bureau of Public Roads, Washington D.C, 1970</li> <li>Bruton M.J. and Hutchinson, "Introduction to Transportation Planning", 2nd edition, London, 1975</li> <li>Drew D.R., "Traffic Flow Theory and Control", McGraw-Hill, New York, 1968</li> </ul>					011		<u> </u>
<ul> <li>(AVL), Automatic Vehicle Identification (AVI), Geographic Information Systems (GIS), Video data collection. Advanced traffic management systems (ATMS), Advanced traveller information Systems (ATIS), Commercial vehicle operations (CVO), Advanced vehicle control systems (AVCS), Advanced Public transportation systems (APTS), and Advanced rural transportation systems (ARTS).</li> <li>Unit 6</li> <li>Public Transport System History and role of Transit, Transit system and transit mode characteristics, Italian condition Bus Rapid Transit Systems (BRTS)-Rapid transit rail-Metro &amp; Mono rails</li> <li>Indian condition Bus Rapid Transit Systems (BRTS)-Rapid transit rail-Metro &amp; Mono rails</li> <li>Kadiyali L.R. Traffic Engineering and Transport planning, Khanna Tech Publishers, 2011</li> <li>Khanna O.P and Justo C.G; Highway Engineering, Nem Chand Publishers, 9e.</li> <li>Jonald Drew, Traffic Flow Theory Chapter 14 in Differential Equation Models, Springer, 1983</li> <li>Reference Books</li> <li>Black John, "Urban Transportation Planning", Croom Helm Ltd. London, 1981</li> <li>"Urban Transportation Planning: General Information and Introduction to System 360", Bureau of Public Roads, Washington D.C, 1970</li> <li>Bruton M.J. and Hutchinson, "Introduction to Transportation Planning", 2nd edition, London, 1975</li> <li>Drew D.R., "Traffic Flow Theory and Control", McGraw-Hill, New York, 1968</li> </ul>	Unit 5						(7)
<ul> <li>collection. Advanced traffic management systems (ATMS), Advanced traveller information Systems (ATIS), Commercial vehicle operations (CVO), Advanced vehicle control systems (AVCS), Advanced Public transportation systems (APTS), and Advanced rural transportation systems (ARTS).</li> <li>Unit 6</li> <li>Public Transport System History and role of Transit, Transit system and transit mode characteristics, Transportation technology Vision–2020, Role of various modes of Mass Transport and their Impact, Indian condition Bus Rapid Transit Systems (BRTS)-Rapid transit rail-Metro &amp; Mono rails</li> <li>Text Books</li> <li>Kadiyali L.R. Traffic Engineering and Transport planning, Khanna Tech Publishers, 2011</li> <li>Khanna O.P and Justo C.G; Highway Engineering, Nem Chand Publishers, 9e.</li> <li>Donald Drew, Traffic Flow Theory Chapter 14 in Differential Equation Models, Springer, 1983</li> <li>Reference Books</li> <li>Black John, "Urban Transportation Planning", Croom Helm Ltd. London, 1981</li> <li>"Urban Transportation Planning: General Information and Introduction to System 360", Bureau of Public Roads, Washington D.C, 1970</li> <li>Bruton M.J. and Hutchinson, "Introduction to Transportation Planning", 2nd edition, London, 1975</li> <li>Drew D.R., "Traffic Flow Theory and Control", McGraw-Hill, New York, 1968</li> </ul>							
<ul> <li>(ATIS), Commercial vehicle operations (CVO), Advanced vehicle control systems (AVCS), Advanced Public transportation systems (APTS), and Advanced rural transportation systems (ARTS).</li> <li>Unit 6</li> <li>Public Transport System History and role of Transit, Transit system and transit mode characteristics, Indian condition Bus Rapid Transit Systems (BRTS)-Rapid transit rail-Metro &amp; Mono rails</li> <li>Text Books</li> <li>Kadiyali L.R. Traffic Engineering and Transport planning, Khanna Tech Publishers, 2011</li> <li>Khanna O.P and Justo C.G; Highway Engineering, Nem Chand Publishers, 9e.</li> <li>Donald Drew, Traffic Flow Theory Chapter 14 in Differential Equation Models, Springer, 1983</li> <li>Reference Books</li> <li>Urban Transportation Planning', Croom Helm Ltd. London, 1981</li> <li>"Urban Transportation Planning: General Information and Introduction to System 360", Bureau of Public Roads, Washington D.C, 1970</li> <li>Bruton M.J. and Hutchinson, "Introduction to Transportation Planning", 2nd edition, London, 1975</li> <li>Drew D.R., "Traffic Flow Theory and Control", McGraw-Hill, New York, 1968</li> </ul>		. ,.		01	•		
Advanced Public transportation systems (APTS), and Advanced rural transportation systems (ARTS).       (ATS).         Unit 6       Public Transport System History and role of Transit, Transit system and transit mode characteristics, Indian condition Bus Rapid Transit Systems (BRTS)-Rapid transit rail-Metro & Mono rails       (7)         Text Books       Image: Condition Bus Condition Bus Condition Bus Rapid Transport planning, Khanna Tech Publishers, 2011       Image: Condition Bus Condition Bus Condition Bus Rapid Transport planning, Khanna Tech Publishers, 2011         I.       Kadiyali L.R. Traffic Engineering and Transport planning, Khanna Tech Publishers, 2011       Image: Condition Bus Condition Bus Condition Bus Present Publishers, 2011         I.       Kadiyali L.R. Traffic Engineering and Transport planning, Khanna Tech Publishers, 2011       Image: Condition Bus Condition Bus Present Publishers, 2011         I.       Kadiyali L.R. Traffic Engineering and Transport planning, Nem Chand Publishers, 9e.       Image: Condition Bus Present Planning: Condition Bus Present Planting         I.       Black John , "Urban Transportation Planning", Croom Helm Ltd. London, 1981       Image: Condition Planning: Condition And Introduction to System 360", Bureau of Public Roads, Washington D.C, 1970         3.       Bruton M.J. and Hutchinson, "Introduction to Transportation Planning", 2nd edition, London, 1975       Image: Condition Planning", Condition Planning", 2nd edition, London, 1975         4.       Drew D.R., "Traffic Flow Theory and Control", McGraw-Hill, New York, 1968       Image: Condition Planning", Condition Planning",							
(ARTS).       (ARTS).         Unit 6       Public Transport System History and role of Transit, Transit system and transit mode characteristics, Indian condition Bus Rapid Transit Systems (BRTS)-Rapid transit rail-Metro & Mono rails       (7)         Indian condition Bus Rapid Transit Systems (BRTS)-Rapid transit rail-Metro & Mono rails       Indian condition Bus Rapid Transit Systems (BRTS)-Rapid transit rail-Metro & Mono rails       (7)         Text Books       Image: Condition Bus Rapid Transport planning, Khanna Tech Publishers, 2011       Image: Condition Bus Rapid Transport planning, Khanna Tech Publishers, 2011       Image: Condition Bus Rapid Transport planning, Khanna Tech Publishers, 2011       Image: Condition Bus Rapid Transport planning, Khanna Tech Publishers, 2011       Image: Condition Bus Rapid Transport planning, Khanna Tech Publishers, 2011       Image: Condition Bus Rapid Transport planning, Khanna Tech Publishers, 2011       Image: Condition Bus Rapid Transport Planning, Khanna Tech Publishers, 9e.       Image: Condition Bus Rapid Transport Planning, Khanna Tech Publishers, 9e.       Image: Condition Bus Rapid Transport Planning, Khanna Tech Publishers, 9e.       Image: Condition Bus Rapid Transport Planning, Condition Bus Rapid Transport Planning, Condition Models, Springer, 1983       Image: Condition Bus Rapid Transport Planning, Condition Bus Rapid Transport Planning, Condition Information and Introduction to System 360", Bureau of Public Roads, Washington D.C , 1970         Image: Condition Milestic Planning       Image: Condition Planning, Condition Planning, Condition, London, 1975       Image: Condition Transportation Planning, Condition Planning, Condition, London, 1975							
Unit 6       Public Transport System History and role of Transit, Transit system and transit mode characteristics, Transportation technology Vision–2020, Role of various modes of Mass Transport and their Impact, Indian condition Bus Rapid Transit Systems (BRTS)-Rapid transit rail-Metro & Mono rails       (7)         Text Books			insportation systems (74 fc	), and Mavaneed ful	ai transportation	systems	
Transportation technology Vision–2020, Role of various modes of Mass Transport and their Impact, Indian condition Bus Rapid Transit Systems (BRTS)-Rapid transit rail-Metro & Mono rails         Text Books         1.       Kadiyali L.R. Traffic Engineering and Transport planning, Khanna Tech Publishers, 2011         2.       Khanna O.P and Justo C.G; Highway Engineering, Nem Chand Publishers, 9e.         3.       Donald Drew, Traffic Flow Theory Chapter 14 in Differential Equation Models, Springer, 1983         Reference Books	Unit 6		em History and role of Trans	it. Transit system and t	ransit mode charact	eristics	(7)
Indian condition Bus Rapid Transit Systems (BRTS)-Rapid transit rail-Metro & Mono rails         Text Books         1.       Kadiyali L.R. Traffic Engineering and Transport planning, Khanna Tech Publishers, 2011         2.       Khanna O.P and Justo C.G; Highway Engineering, Nem Chand Publishers, 9e.         3.       Donald Drew, Traffic Flow Theory Chapter 14 in Differential Equation Models, Springer, 1983         Reference Books	Chit U						(I)
Text Books       Image: Constraint of the state of the s						puot,	
<ol> <li>Kadiyali L.R. Traffic Engineering and Transport planning, Khanna Tech Publishers, 2011</li> <li>Khanna O.P and Justo C.G; Highway Engineering, Nem Chand Publishers, 9e.</li> <li>Donald Drew, Traffic Flow Theory Chapter 14 in Differential Equation Models, Springer, 1983</li> <li>Reference Books</li> <li>Black John , "Urban Transportation Planning", Croom Helm Ltd. London, 1981</li> <li>"Urban Transportation Planning: General Information and Introduction to System 360", Bureau of Public Roads, Washington D.C ,1970</li> <li>Bruton M.J. and Hutchinson, "Introduction to Transportation Planning", 2nd edition, London, 1975</li> <li>Drew D.R., "Traffic Flow Theory and Control", McGraw-Hill, New York, 1968</li> </ol>				, <u> </u>			
<ol> <li>Kadiyali L.R. Traffic Engineering and Transport planning, Khanna Tech Publishers, 2011</li> <li>Khanna O.P and Justo C.G; Highway Engineering, Nem Chand Publishers, 9e.</li> <li>Donald Drew, Traffic Flow Theory Chapter 14 in Differential Equation Models, Springer, 1983</li> <li>Reference Books</li> <li>Black John , "Urban Transportation Planning", Croom Helm Ltd. London, 1981</li> <li>"Urban Transportation Planning: General Information and Introduction to System 360", Bureau of Public Roads, Washington D.C ,1970</li> <li>Bruton M.J. and Hutchinson, "Introduction to Transportation Planning", 2nd edition, London, 1975</li> <li>Drew D.R., "Traffic Flow Theory and Control", McGraw-Hill, New York, 1968</li> </ol>	Text Bo	oks					
<ol> <li>Khanna O.P and Justo C.G; Highway Engineering, Nem Chand Publishers, 9e.</li> <li>Donald Drew, Traffic Flow Theory Chapter 14 in Differential Equation Models, Springer, 1983</li> <li>Reference Books         <ul> <li>Black John , "Urban Transportation Planning", Croom Helm Ltd. London, 1981</li> <li>"Urban Transportation Planning: General Information and Introduction to System 360", Bureau of Public Roads, Washington D.C, 1970</li> <li>Bruton M.J. and Hutchinson, "Introduction to Transportation Planning", 2nd edition, London, 1975</li> <li>Drew D.R., "Traffic Flow Theory and Control", McGraw-Hill, New York, 1968</li> </ul> </li> </ol>			neering and Transport planni	ng, Khanna Tech Publis	shers, 2011		
<ol> <li>3. Donald Drew, Traffic Flow Theory Chapter 14 in Differential Equation Models, Springer, 1983</li> <li>Reference Books         <ol> <li>Black John , "Urban Transportation Planning", Croom Helm Ltd. London, 1981</li> <li>2. "Urban Transportation Planning: General Information and Introduction to System 360", Bureau of Public Roads, Washington D.C ,1970</li> <li>3. Bruton M.J. and Hutchinson, "Introduction to Transportation Planning", 2nd edition, London, 1975</li> <li>4. Drew D.R., "Traffic Flow Theory and Control", McGraw-Hill, New York, 1968</li> </ol> </li> </ol>							
Reference Books       1.         Black John , "Urban Transportation Planning", Croom Helm Ltd. London, 1981         2.       "Urban Transportation Planning: General Information and Introduction to System 360", Bureau of Public Roads, Washington D.C ,1970         3.       Bruton M.J. and Hutchinson, "Introduction to Transportation Planning", 2nd edition, London, 1975         4.       Drew D.R., "Traffic Flow Theory and Control", McGraw-Hill, New York, 1968			<u> </u>				
<ol> <li>"Urban Transportation Planning: General Information and Introduction to System 360", Bureau of Public Roads, Washington D.C ,1970</li> <li>Bruton M.J. and Hutchinson, "Introduction to Transportation Planning", 2nd edition, London, 1975</li> <li>Drew D.R., "Traffic Flow Theory and Control", McGraw-Hill, New York, 1968</li> </ol>			· •				
Washington D.C ,19703. Bruton M.J. and Hutchinson, "Introduction to Transportation Planning", 2nd edition, London, 19754. Drew D.R., "Traffic Flow Theory and Control", McGraw-Hill, New York, 1968	1. Bla	ck John ,"Urban Transp	portation Planning", Croom H	Ielm Ltd. London, 1981	1		
Washington D.C ,19703. Bruton M.J. and Hutchinson, "Introduction to Transportation Planning", 2nd edition, London, 19754. Drew D.R., "Traffic Flow Theory and Control", McGraw-Hill, New York, 1968						f Public R	loads,
4. Drew D.R., "Traffic Flow Theory and Control", McGraw-Hill, New York, 1968	Wa	<u> </u>					
						5	
5. Hutchinson B.G., "Principles of Urban Transport Systems Planning", McGraw-Hill Book Co., New York, 1974							
	5. Hut	tchinson B.G., "Princip	oles of Urban Transport Syste	ms Planning", McGraw	v-Hill Book Co., Ne	ew York,	1974

$PO \rightarrow$	<b>PO</b> 1	PO 2	PO 3	PO 4	PO 5	PO 6	<b>PO 7</b>	<b>PO 8</b>	PO 9	<b>PO</b> 10	PO 11	PO 12	PSO	PSO
CO↓													1	2
CO 1	1	3	3	-	3	-	1	-	-	-	-	1	2	1
CO 2	2	2	-	3	2	-	-	-	-	-	-	-	1	1
CO 3	-	-	-	2	3	-	-	-	-	-	-	-	1	1

Knowledge Level	CT 1	CT 2	TA	ESE
Remember	5	-	2	12
Understand	5	5	2	12
Apply	5	5	2	12
Analyse	-	5	2	12
Evaluate	-	-	2	12
Create	-	-	-	-
TOTAL	15	15	10	60

# Government College of Engineering, Karad Final Year (Sem – VIII) B. Tech. Civil Engineering CE2842: (Elective V) Bridge Engineering

				lite () bridge Li		•		
Teach	ing Sche	me				<b>Examination Sch</b>	eme	
Lecture		3 Hrs/week				CT – 1	15	
Tutoria		-				CT - 2	15	
Total C		3				TA	10	
Total C	Jieans	5				ESE	60	
						Duration of ESE		30 Min
Course	e Outcor	nes (CO)				Duration of LSL	02 1113	50 10111
	t will be							
			loads in analysis of	bridges as per loa	d classes of	ven in IRC		
			of various componen		u classes gi	ven m n.e.		
			techniques used in the	U	idaas			
			different types of brid		luges.			
4. 501		yse and design	unrerent types of ond	ge bearings.				
			C	ourse Contents				Hours
Unit 1	Fund	amontals of Bri	dges: Standard specifi		Pridage IP	C bridge code wid	Ith of	(07)
Unit I			es, loads to be conside		Juges. I.K	.c. blidge code, wit		( <b>0</b> )
			etermination of design		water way	economical span lo	ocation	
			s, afflux, scour depth,	0	water way,	ceononnear span, re	Scation	
Unit 2			general design consid		& PSC ł	ridges Traffic aspe	ects for	(06)
		ay bridges.	general design consid	crutions for R.C.C		fildges, fildlife dspe		(00)
Unit 3			oncrete deck slab usin	o Pigeaud'stheory	beam and	slab and T – beam		(07)
cint c		on's theory.		ig i igeada sineorj	, o cuin una	blue ulla 1 beulli,		(07)
Unit 4			re: Abutments, Piers,	well foundation, a	approach sla	ab.		(06)
Unit 5			ques: Construction of		<b>.</b> .		n of	(07)
0 1110 0			ing wall and reinforce		•			(0.)
			on by cantilever method		<b>I</b>			
Unit 6			ge Bearing and expan		on bearing	s, Types of bearings	5,	(07)
			l elastomeric bearings,					, ,
		vilitation of Exist		1 5	1	0 0,		
Text B								
<b>1.</b> B	indra S. I	P., "Principles ar	d Practice of Bridge H	Engineerimg", Dha	npatRai Pu	blications, 8th Edition	on, 2012.	
2. V	ictor D.	J., "Elements of ]	Bridge Engineering",	Oxford and IBH, 5	th Edition, 2	2001.		
			Engineering", Tata Mc				ition, 200	)7.
	ence Boo		0 0					
<b>1.</b> A	lagia J. S	., Rangwala S. C	C., "Elements of Bridg	e Engineering", C	harotar Pub	lishing House, 8th E	dition, 1	983.
			Bridge Practice, Analy					
		Limited, 2002			,			č
3. N	. Krishna	Raju, "Design o	of Bridges", Oxford &	IBH Publishing C	Co. Pvt			
L	td., New	Delhi, 4 th editior	n, 2001.	C				
Useful								
<b>1.</b> R	einforced	l Concrete Road	Bridges, By Prof. Nir	jhar Dhang ,IIT Kl	haragpur.			•
ht	ttps://onli	necourses.nptel.	ac.in/noc21 ce43/prev	view	-			
			<b>`</b>					

$PO \rightarrow$	<b>PO</b> 1	<b>PO 2</b>	PO 3	PO 4	PO 5	<b>PO</b> 6	PO 6	PO 8	PO 9	<b>PO</b> 10	PO 11	<b>PO</b> 12	PSO	PSO
CO↓													1	2
CO 1	3	2	1	1	1	-	-	1	-	1	-	2	3	3
CO 2	2	3	1	2	1	-	1	1	1	-	1	1	3	3
CO 3	3	2	2	1	3	1	-	1	-	2	1	3	3	3
CO 4	2	2	3	2	2	2	3	2	-	2	2	3	3	3

Knowledge Level	<b>CT</b> 1	CT 2	TA	ESE
Remember	5	2	1	6
Understand	6	2	1	8
Apply	4	6	1	11
Analyse	0	4	4	15
Evaluate	0	0	3	15
Create	0	1	0	5
TOTAL	15	15	10	60

			<b>Government Colleg</b>	e of Engineering, H	Karad		
			inal Year (Sem – VIII)		0 0		
			2: (Elective V) Advance	ed Design of Conc			
Teac	ching Schei	me			Examination S	cheme	
Lect	ures	03Hrs/week			CT – 1	15	
Tuto	rials	-			CT – 2	15	
Tota	l Credits	03			ТА	10	
					ESE	60	
					Duration of ESE	E 03 Hrs	
	rse Outcon						
	ent will be						
		<u> </u>	different types of RC str				
		A	ecial RC structures under		d combinations.		
			ng of reinforcement in spe				
4.	learn appli	cation of different	nt IS code specifications	<u> </u>	uctures.		**
<b>T</b> T •	(1 D ·			se Contents	· (115 · 1		Hours
Uni	Ų		analysis and design of		sign method, Equival	ent frame	(07)
	metho	od, detailing of r	einforcement as per Coda	provisions.			
Uni	t 2 Analy	is of Deen Be	ams: design of simply	upported and contin	wous deen beam as i	per Codal	(06)
om	provis	·	ans. acsign of shipiy	apported and contin	luous deep beam as j		(00)
Uni			analysis of stresses in RC	C chimney- uncrack	ed and cracked section	ons. Codal	(07)
	Ų	sions, design of	•			.,	()
	1		J				
Uni	C		Vater Tanks: rectangular			ectangular	(07)
			flat and dome shaped tar				
Uni			shear walls, analysis and		<u> </u>		(07)
Uni		line analysis o orted rectangular	f slabs: virtual work and slabs	equilibrium method	d of analysis, design	of simply	(06)
Tuto		<b>v</b>	unit is to be solved and	submitted by the stu	udent		
	Books						
1.		and S.R. Karve	, "Limit State Theory and	Design",Structures p	oublications,8 th edition	n, 2014	
2.			d Reinforced Concrete D				)10
3.	Ramamrut	ham, "Design of	Reinforced Concrete Str	ictures", Dhanpatrai	& son's publication,9 t	h edition, 1	981
Refe	erence Bool	KS					
1.			rced Concrete Structural		<u> </u>		
2.			ncrete: Limit State Desig			lition, $2012$	2
3.	2	,	l Concrete Chimneys",La	A			
4.			dson, "Yield Line Analys		&windus Publisher, Lo	ondon, 1967	7
5.	0	10	ncrete Association of Ind				
6.			00, Plain and reinforced				
7.			oncrete structures for the				C T 1'
8.		garwal and Man / Delhi, 2007	ish ShriKhande, Earthqu	ake Resistant Desigi	n of Structures, Prent	ice- Hall o	of India,
0			to the Theory of Sei	mology, Great Brit	ain at the University	/ Printing	houses
9.			•	June 105, Stear Diff	and at the Oniversity		
9.	Cambridge	e University Pres					
	Cambridge ul Links	e University Pres					
	ul Links	l.ac.in/courses/1					

$PO \rightarrow$	<b>PO</b> 1	<b>PO 2</b>	PO 3	PO 4	PO 5	PO 6	<b>PO 6</b>	<b>PO 8</b>	PO 9	PO 10	PO 11	PO 12	PSO	PSO
CO↓													1	2
CO 1	3	2	1	1	1	-	-	1	-	1	-	2	3	3
CO 2	2	3	2	2	2	1	2	1	-	1	1	1	3	3
CO 3	3	3	2	1	2	1	-	1	-	3	1	3	3	3
CO 4	3	2	2	2	2	2	3	2	1	3	2	3	3	3

Knowledge Level	<b>CT</b> 1	CT 2	TA	ESE
Remember	1	1	1	06
Understand	2	2	1	06
Apply	3	3	2	12
Analyse	3	3	2	12
Evaluate	3	3	2	12
Create	3	3	2	12
TOTAL	15	15	10	60

	Governme	t College of Engi	neering, Karad	
	Final Year (Se	n – VIII) B. Tech.	Civil Engineerin	g
CE 281	3 : (Open Elective V La	b) MATLAB App	lications In Civil	Engineering Lab
Laboratory Scher				ion Scheme:
Practical	2 Hrs/week		CA	50
Total Credits	01			
Course Outcomes				
Course Outcomes Students will be a				
	stand fundamentals and nu	nerical analysis meth	nods of MATLAB	
	re and apply basic MATLA			operations
<b>1</b>	n and solve problems in va			1
U	stand future trends in MAT		6 6 6 6	
I		Course Contents	s	
Task 1	Introduction to MATLA	B Programming, Fu	ndamentals & Nume	rical analysis
Task 2	Field measurements usin	g MATLAB		
Task 3	experimental investigati	n using MATLAB		
Task 4	Basic programming, ma	rix operations		
Task 5	Plotting – 2D, 3D			
Task 6	Designing & solving Str	ctural Engineering p	problems	
Task 7	Monitoring Structural h	alth using MATLAE	3	
Task 8	Designing & solving Hy	Iraulic Engineering	problems using MAT	ГLАВ
Task 9	Designing & solving Ge	technical Engineering	ng problems using N	IATLAB
Task 10	Designing Transportation	n monitoring & contr	rol system using MA	TLAB
Task 11	Designing & solving Su	veyingproblems usir	ng MATLAB	
Task 12	Designing & solving En	vironmental Engineer	ring problems using	MATLAB
Requirement Tools :	MATLAB software			
List of Submission	n:			
	Practicals of MATLAB	pplications in Civil I	Engineering	

$PO \rightarrow$	<b>PO</b> 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 6	<b>PO</b> 8	PO 9	<b>PO</b> 10	PO 11	PO 12	PSO	PSO
CO↓													1	2
CO 1	1	1	2	1	1	-	-	-	-	-	-	1	1	1
CO 2	2	1	2	1	2	-	-	-	-	-	-	1	2	1
CO 3	1	2	2	1	2	1	-	-	-	-	-	1	1	1
CO 4	2	1	1	-	-	-	1	-	-	-	-	2	1	1

Skill Level (as per CAS Sheet)	Task 1	Task 2	Task 3	Task 4	Task 5	Task 6	Task 7	Task 8	Task 9	Task 10	Task 11	Task 12	Avg
Task I	30	30	30	30	30	30	30	30	30	30	30	30	30
Task II	10	10	10	10	10	10	10	10	10	10	10	10	10
Task III	10	10	10	10	10	10	10	10	10	10	10	10	10
CA/TA	50	50	50	50	50	50	50	50	50	50	50	50	50

	Govern	nent College of	Engineering,	Karad	
	Final Year	(Sem – VII) B.	Tech. Civil Er	ngineering	
	(	E <b>2804 : Softwa</b>	re Laboratory	7	
Laboratory Sch	eme:			Examinati	ion Scheme:
Practical	2 Hrs/week			CA	50
<b>Total Credits</b>	1			ESE	50
Course Outcom					
Course Outcom Students will be					
	lerstand the suitability and	applications of v	various Civil Eng	ineering So	oftwares available.
	n, design and estimate pro		0	0	
	n, design and estimate pro	Course Co			
Experiment 1	Introduction to varie				
Experiment 2	Introduction to ETA	S, SAP 2000 & S	STAAD PRO So	oftwares	
Experiment 3	Analysis and design	of various structur	res such as multi	i-storey fran	ned structures, bridges Water
	Tank etc. By using I	ΓABS			
Experiment 4	Analysis and design	of various structur	res such as multi	i-storey fran	ned structures, bridges, intze
	tank etc. By using S	P 2000			
Experiment 5	Analysis and design	of various structur	res such as multi	i-storey fran	ned structures, bridges, intze
	tank etc. By using S				
Experiment 6	Plotting of Graphica	design of various	s Structural mem	bers by usin	ng AutoCAD Revit
	Architecture suite				
Experiment 7				g Auto CAI	O Revit Structure suite
Experiment 8	Use of Project Mana		-		
Experiment 9	Preparation of Bar C			arts and find	ding Critical Path
Experiment 10	Use of Project Mana				
<b>Experiment 11</b>	Practice on Resource		0		
Experiment 12			res such as multi	i-storey fran	ned structures, bridges Water
	Tank etc. By using I				
Requirement Tools :	Civil Engineering Se	twares			
List of Submiss	ion:				
	Any 9 experiments				

$PO \rightarrow$	PO 1	<b>PO 2</b>	PO 3	PO 4	PO 5	PO 6	PO 6	PO 8	PO 9	PO 10	<b>PO</b> 11	<b>PO</b> 12	PSO	PSO
CO↓													1	2
CO 1	3	2	-	1	2	1	-	-	1	-	1	1	1	1
CO 2	3	2	2	2	2	2	1	-	1	1	2	2	2	1

Skill Level (as per CAS Sheet)	Exp 1	Exp 2	Exp 3	Exp 4	Exp 5	Exp 6	Exp 7	Exp 8	Exp 9	Exp 10	Exp 11	Exp 12	Avg
Task I	30	30	30	30	30	30	30	30	30	30	30	30	30
Task II	10	10	10	10	10	10	10	10	10	10	10	10	10
Task III	10	10	10	10	10	10	10	10	10	10	10	10	10
CA/ESE	50	50	50	50	50	50	50	50	50	50	50	50	50

		Govern	ment College of Enginee	ering, Karad	
		<b>Final Year</b>	(Sem – VIII) B. Tech. C	ivil Engineering	5
			CE2805 :Project		
Laborator	y Scheme	•		Examinat	tion Scheme:
Practical		20 Hrs/week		CA	200
<b>Total Cree</b>	dits	10		ESE	200
<b>Course Ou</b>	itcomes:				
Students v	vill be abl	e to			
1	perform d	etail literature surv	vey on the research topic of v	work.	
2	carry out	detailed mathemat	ical modelling or experiment	tal validation.	
3	draw infe	rences from the fir	dings and present conclusion	n.	
4	possess pi	resentation and tec	hnical report writing skills.		
			<b>Course Contents</b>		

The project may be a design project, experimental project, field surveying or computer oriented on any of the topics of civil engineering interest. Project group consists of a minimum THREE and maximum FIVE students. The group is required to do literature survey, formulate the problem, propose and execute methodology.

Students will prepare a technical report in prescribed format based on their work.

The assessment of the project will be done at the end of the semester by a committee consisting of three faculty members from the department along with Project Guide. The students will present their project work before the committee. The presentation of the project shall be of 45min followed by viva voce.

The project guide will award the marks to the individual students depending on the group average awarded by the committee.

One Project Guide shall be allotted maximum TWO groups for guidance. Each group will submit the copies of the completed project report. One copy will be kept in the departmental library.

$PO \rightarrow$	<b>PO</b> 1	<b>PO 2</b>	PO 3	PO 4	PO 5	<b>PO</b> 6	<b>PO 7</b>	PO 8	<b>PO 9</b>	<b>PO</b> 10	PO 11	PO 12	PSO	PSO
CO↓													1	2
<b>CO</b> 1	-	1	1	1	3	2	2	1	3	2	3	3	1	3
CO 2	2	3	3	3	3	3	3	1	3	2	3	3	2	3
CO 3	3	3	2	3	3	3	3	3	3	1	3	3	2	3
CO 4	1	-	1	-	3	1	1	1	3	3	3	3	2	3

### Mapping of COs and POs

Knowledge Level	CA	ESE
Remember	36	36
Understand	36	36
Apply	36	36
Analyse	36	36
Evaluate	36	36
Create	20	20
TOTAL	200	200

	Government College	e of Engineering, Karad	
	Final Year (Sem – VIII)	<b>B. Tech. Civil Engineering</b>	
	CE2806	: MOOC-1	
Laboratory Sch	eme:	Examinati	on Scheme:
Practical	Hrs/week	СА	
<b>Total Credits</b>	04	ESE	
<b>Course Outcom</b>	es:		
Students will be	able to		
1 evalu	ate knowledge that they gain from MO	DOC.	
2 apply	theoretical knowledge to practical ca	ses in learned subjects.	
	Course	e Contents	
	cted to register for online MOOC availab m 12 weeks. <b>Combination of weeks ma</b>		
	or presentation.		

		ent College of Engineering		
	Final Year (S	Sem – VIII) B. Tech. Civil	Engineering	g
		CE2807 : MOOC-2		
Laboratory Sch	eme:		Examina	tion Scheme:
Practical	Hrs/week		CA	
<b>Total Credits</b>	04		ESE	
<b>Course Outcom</b>	es:			
Students will be	able to			
1 evalu	ate knowledge that they	gain from MOOC.		
2 apply	theoretical knowledge to	p practical cases in learned subj	ects.	
		<b>Course Contents</b>		
		AOOC available on platforms lik <b>1 of weeks may be (8+4) / (4+4</b> -4)		
	ent as per norms of the ins t presented. or presentation.	based on courses completed, befo titute. The evaluation will be bas	-	-

			ment College of			
		Final Year	(Sem – VIII) B.		gineering	5
			CE2808 : Indus			
Laborator	y Scheme	:		]	Examinat	ion Scheme:
Practical		Hrs/week			CA	200
<b>Total Cree</b>	lits	10		]	ESE	200
Course Ou						
Students v	vill be able	e to				
1		<u> </u>	he industry would b		eer option	to pursue.
2			in an organizational	l setting.		
3	develop c	ommunication and	teamwork skills.			
4	create net	work and social ci	ccle and develop rela	ationships with	industry pe	ople.
			Course Co	ntents		
The general	procedure f	or arranging interns	hip is given below:			
				st letter/profile/ in	nterest areas	s may be submitted to
industries fo	r their willir	ngness for providin	g the training.			
						onfirmation Letter/ Email. In
						y the students in the office of
						reed to by the Industry, Head
						yed through Telephonic or
			Summer Internship		ers of the Ta	&P cell / Faculty members
					t tha Iaining	g Report/ Letters / Email.
			ie concerned Industry			
						l Evaluation Report of the
			PO with the consent			
			completion of intern		ons, mane	
		to be obtained from		<b>F</b> ·		
-			-			
Internship (						
		s intend to do inter	nship should be			
1. Should be						
		have MoU with G				
			ction and period of in			4'
		s attendance while	o visit company for p	beriormance eval	uation and	uiscussion
J. Should Sh		s auchuance wille	in miernsnip			

6. Should allow students to visit institute once in month or agreed by Head of Department.

## Mapping of COs and POs

$PO \rightarrow$	<b>PO</b> 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	<b>PO</b> 10	<b>PO</b> 11	PO 12	PSO	PSO
CO↓													1	2
<b>CO</b> 1	-	1	1	1	3	2	2	1	3	2	3	3	1	3
CO 2	2	3	3	3	3	3	3	1	3	2	3	3	2	3
CO 3	3	3	2	3	3	3	3	3	3	1	3	3	2	3
CO 4	1	-	1	-	3	1	1	1	3	3	3	3	2	3

Knowledge Level	CA	ESE
Remember	36	36
Understand	36	36
Apply	36	36
Analyse	36	36
Evaluate	36	36
Create	20	20
TOTAL	200	200

		Governme	nt College of En	gineering, k	Karad			
			m – VII) B. Tee					
		b I: CE2714: Fo	undations of D	ata Science a			Lab	
Laboratory	Scheme:	1			Examinatio	n Scheme:		
Practical		04Hrs/week			ISE	-		
Total Credits		Audit Course			ESE	-		
		tics, Basic Program Students will be a						
Course Out CO1		l visualize data usi		nods and tools	to extract me	aningful insig	,hts.	
CO2	Implement	and manage efficie	ent data storage, re	etrieval, and p	reprocessing f	for decision-m	aking.	
CO3	Develop an	d evaluate machine	e learning models	and neural ne	tworks to solv	ve complex pr	oblems.	
CO4	Utilize clou	d computing resou	rces and ensure e	hical consider	rations in the	design of AI s	ystems.	
		С	ourse Contents				CO	
Implementa	tion of follo	wing concepts						
Experiment	1 Data	visualization effectiveness evaluation with Python and Tableau						
Experiment	2 Real-	world dataset explo	pratory analysis us	sing Python /R	R		CO1	
<b>Experiment 3</b> Common data cleaning challenges and solutions using Python and SQL							CO2	
Experiment	4 Datab	ase performance o	ptimization strate	gies assessme	nt.		CO2	
Experiment	5 Mach	ine learning alg	orithm performa	nce compari	son using T	FensorFlow,	CO3	
	РуТо	ch, and scikit-lear	n				05	
Experiment	6 Mach	Machine learning model monitoring framework development using TensorFlow						
	Servi	Serving and Prometheus						
Experiment	7 Neura	l network archite	cture comparisor	for image c	classification	tasks using	CO3	
	Tenso	TensorFlow and PyTorch with and without Hyperparameter tuning						
Experiment	8 Trans	fer learning techni	ques implementat	ion and evaluation	ation		CO3	
Experiment	9 Scala	oility assessment	using containeri	zation techno	logies like l	Docker and	CO4	
	Kuber	metes.					004	
Experiment	10 Serve	rless architecture i	mplementation an	d efficiency e	valuation.		CO4	
Experiment	11 Bias	Bias detection experiments using fairness metrics and diverse datasets and						
	Fairne	ess-aware model tr	aining techniques	exploration			CO4	
Experiment	12 Regul	atory compliance a	analysis and strate	gies developn	nent		<b>CO4</b>	
List of Subr								
Minimum N	o. of Experiment	ments: 10						

Trappin	Mapping of COs and TOs													
$PO \rightarrow$	PO 1	<b>PO 2</b>	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2
CO↓														
CO 1	2	3	3	3	3	1	-	-	-	-	-	2	-	2
CO 2	2	2	2	2	3	2	-	-	2	2	2	2	1	-
CO 3	3	3	3	3	3	-	1	2	1	2	3	2	-	1
CO 4	2	3	2	3	3	2	2	2	2	2	1	2	2	-
1: Slight	tt(Low) 2: Moderate (Medium)				3: Substantial (High)			High)						

Assessment Guideline: Course coordinator will decide the suitable assessment method for internal evaluation for the course completion.

*Note: Provide detailed feedback on each experiment and overall performance, focusing on:

- Technical skills and proficiency.
- Creativity and problem-solving abilities.
- Communication and presentation skills.
- Collaboration and peer review contributions.

	Government College of Engineering, Karad					
	Final Year (Sem – VII) B. Tech. Civil Engineering					
	Audit Course Lab I: CE2724: AIoT Development Lab					
Laboratory Sche						
Practical	04Hrs/week ISE -					
Total Credits	Audit Course ESE -					
Prerequisite : M:	athematics, Basic Programming skills					
<b>Course Outcome</b>	s (CO): Students will be able to					
CO1 Unde	erstand the fundamentals of IoT hardware and software.					
CO2 Deve	elop proficiency in programming and simulating IoT devices.					
	knowledge of artificial intelligence concepts and their integration with IoT systems	5.				
	ore the practical applications and implications of IoT technologies in various domai					
L B	Course Contents	CO				
Implementation	of following concepts					
Experiment 1	Familiarization with IoT development kits (e.g., Raspberry Pi, Arduino, ESP32)	CO1				
Experiment 2	Understanding the components and capabilities of IoT hardware platforms	C01,				
Experiment 2	onderstanding the components and capabilities of for hardware platforms	CO1, CO2				
Experiment 3	Exploring different types of sensors (temperature, humidity, motion, light, etc.)	CO2,C				
Experiment 5	Experiment o					
Experiment 4	Hands-on exploration of actuators (motors, servos, relays) and their applications	03 CO1				
Experiment	in IoT					
<b>Experiment 5</b> Using IoT Circuit Designing Software to build circuits with drag & drop features						
Experiment 6 Programming IoT devices using Block Designer Software						
Experiment 7	Simulating IoT circuits in a virtual environment	CO1 CO2				
Experiment 8	Hands-on practice with IoT development boards and sensors	CO4				
Experiment 9	Programming AI models using Block Designer Software	CO3				
Experiment 10	Implementing Python scripts for data analysis and AI applications	CO2,				
		<b>CO3</b>				
Experiment 11	Integrating AI models with IoT devices for smart solutions	CO1				
Experiment 12	Overview of Artificial Intelligence (AI) and its applications	CO4				
Experiment 13	Introduction to the Internet of Things (IoT) and its significance	CO2				
Experiment 14	Understanding the concept of Artificial Intelligence of Things (AIoT)	CO3				
Experiment 15	Exploring the role of IoT gateways in bridging mobile devices and IoT networks	CO4				
Experiment 16	Techniques for establishing seamless connections between mobile devices and	CO1				
-	IoT gateways					
<b>Experiment 17</b>	Hands-on exercises demonstrating the setup and configuration of mobile-to-IoT	CO4				
-	connections					
<b>Experiment 18</b>	Overview of sensor technologies commonly used in IoT applications	CO3				
Experiment 19	In-depth exploration of various types of sensors and their academic	CO1				
_	underpinnings					
Experiment 20	Practical demonstrations showcasing the functionality and applications of	CO4				
	sensors in IoT systems					
List of Submissio	on:					
	Experiments: 18					

Mapping of COs and TOS														
$PO \rightarrow$	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2
CO↓														
CO 1	2	3	3	2	2	2	-	-	2	2	2	3	2	2
CO 2	2	3	2	2	2	2	-	-	3	2	2	3	2	1
CO 3	2	2	3	2	2	2	-	-	2	2	2	2	-	1
CO 4	2	2	2	3	2	2	1	2	3	2	2	3	2	-
1: Slight(Low) 2: Moderate (Medium)					)	3:	Subst	antial (H	ligh)					

Assessment Guideline: Course coordinator will decide the suitable assessment method for internal evaluation for the course completion.

*Note: Provide detailed feedback on each experiment and overall performance, focusing on:

- Technical skills and proficiency.
- Creativity and problem-solving abilities.
- Communication and presentation skills.
- Collaboration and peer review contributions.

		Government College of Engineering, Karad	
		Final Year (Sem – VII) B. Tech. Civil Engineering	
	Audit	t Course Lab I: CE2734: Immersive Game Development Lab	
Laboratory		Examination Scheme:	
Practical	y Scheme.	04Hrs/week ISE -	
Total Credit	ts	Audit Course     ESE     -	
		atics, Basic Programming skills	
		):Students will be able to	
CO1		ty and 3D content creation basics for virtual environment design.	
CO1		nity animations and physics for engaging gameplay.	
CO2		UI/UX design and scripting for user-friendly Unity interfaces.	
<u>C03</u> C04		timize, and deploy AR/VR experiences in Unity with audio-visual enhancem	ents
04	Design, op	Course Contents	CO
Implement	ation of foll	lowing concepts	CO
Experimen	ILI   Keal	-time Rendering Comparison	
		• Understand real-time rendering and compare it with offline rendering.	CO1
		• Research and present the concept of real-time rendering,	
<b>F</b>	4 0 II	<ul> <li>Discuss the importance of optimization in real-time rendering.</li> </ul>	
Experimen		y Interface Exploration	
		• Explore Unity's interface and features,	CO1
		• Experiment with various tools available in Unity.	
Experimen	4 2 Intu	• Create a simple scene and organize objects within it. • oduction to 3D Modelling	
Experimen		• Learn basics of 3D modelling.	
		<ul> <li>Understand fundamental 3D modelling concepts, tools, and techniques.</li> </ul>	CO1
		<ul> <li>Practice creating basic 3D models using modelling software.</li> </ul>	
Experimen	t 1 Anin	nation Basics in Unity	
Experimen		• Understand animation concepts and tools in Unity.	
			CO2
		blending.	02
		<ul> <li>Create simple animations for objects and characters in Unity.</li> </ul>	
Experimen	t 5 Unit	y's Physics Engine	
Experimen		Introduction to Unity's physics engine.	
		• Learn about Unity's physics components like Rigid body, Collider, and	CO2
		Physics materials.	02
		<ul> <li>Implement basic physics interactions in Unity scenes.</li> </ul>	
Experimen	t 6 III D	Design and Scripting	
2aper men		• Learn UI/UX design principles and basic scripting in Unity.	
		• Create UI elements using Unity's UI system.	CO3
	•	• Learn basics of C# programming language and Write scripts for UI	
		interactions and applications.	
Experimen	t 7 Aud	io and Visual Effects Implementation	
1		• Add audio assets and visual effects to Unity projects.	000
	•	Implement sound effects, background music, and spatial audio.	CO3
	•	Incorporate visual effects using Unity's VFX Graph.	
Experimen	t 8 Unit	y Project Optimization	
-		Learn techniques for optimizing Unity projects.	CO2
	•	Implement LOD (Level of Detail), batching, and occlusion culling.	CO3
		• Optimize performance in Unity projects.	
Experimen	t 9 Aug	mented Reality Setup and Interaction	
-	•	• Understand AR hardware and develop AR experiences.	COA
	•	• Set up AR sessions and detect/tracking surfaces.	CO4
		• Place virtual objects in the real world and implement interactions.	

Experiment 10	Virtual Reality Development	
	<ul> <li>Develop VR experiences using Unity. –</li> </ul>	
	• Configure Unity for Oculus development. –	<b>CO4</b>
	• Develop a VR experience for the Meta Quest platform Implement VR	
	interactions like grabbing and teleportation.	
List of Submission	on:	
Minimum No. of	Experiments: 10	

$PO \rightarrow$	PO	PO 10	PO	PO	PSO1	PSO2								
CO↓	1	2	3	4	5	6	7	8	9		11	12		
CO 1	2	3	1	3	2	3	-	-	1	2	3	3	2	2
CO 2	1	1	3	2	2	1	-	-	3	3	1	1	-	-
CO 3	1	3	1	3	1	3	1	3	1	1	3	3	1	1
CO 4	1	1	3	1	3	3	2	1	3	3	1	1	1	-
1: Slight(Low) 2: Moderate (Medium)							)	3:	Subst	antial (H	ligh)			

Assessment Guideline: Course coordinator will decide the suitable assessment method for internal evaluation for the course completion.

*Note: Provide detailed feedback on each experiment and overall performance, focusing on:

- Technical skills and proficiency.
- Creativity and problem-solving abilities.
- Communication and presentation skills.
- Collaboration and peer review contributions.

	Government College of Engineering, Karad	
	Final Year (Sem – VII) B. Tech. Civil Engineering	
	Audit Course Lab I : CE2744 : ABAP Programming for SAP HANA Lab	
Laboratory S	cheme: Examination Scheme:	
Practical	4Hrs/week ISE -	
Total Credits	Audit CourseESE-	
Prerequisite :	Java Programming	
<b>Course Outco</b>	mes (CO): Students will be able to	
CO1 Unders	and SAP HANA concepts, key technologies, and use of SAP HANA Studio and ADT	
	and address ABAP code performance issues and understand SAP HANA's technica	al requirements
	loyment options	
	Enhanced Open SQL, Core Data Services (CDS), and develop with SAP HANA N	ative SQL and
	Managed Database Procedures	
CO4 Integra	e SAP HANA models into ABAP, transport objects, and optimize reports with Full Tex	
	Course Contents	CO
Experiment 1	Introduction:-SAP HANA Basics and Technical Concepts, SAP HANA	<b>CO1</b>
	Studio, ABAP and SAP HANA	
Experiment 2	Introducing the ABAP Development Tools (ADT),	<b>CO1</b>
	• Taking ABAP to SAP HANA,	
<b>F</b> • • • • •	SAP HANA as Secondary Database– Access via Open SQL.	
Experiment 3	Code Checks to Prepare ABAP Code for SAP HANA,	<b>CO2</b>
	<ul> <li>Tools to Analyse Potential Performance Issues,</li> <li>Guided Performance Analysis.</li> </ul>	
Experiment 4	SQL Performance Rules for SAP HANA,	CO2
Experiment 4	<ul> <li>Database Independent Code-to-Data</li> </ul>	02
	<ul> <li>Classical Open SQL and Its Limitations.</li> </ul>	
Experiment 5	Enhanced Open SQL,	CO3
L.	• The Basics of Core Data Services in ABAP,	
	<ul> <li>Associations in Core Data Services,</li> </ul>	
	Outlook: More Interesting Features of CDS.	
Experiment 6	SAP HANA specific Code-to-Data,	CO3
	• The Syntax of SAP HANA Native SQL,	
	<ul> <li>ABAP Managed Database Procedures,</li> <li>ABAP Managed Database Procedures.</li> </ul>	
Experiment 7	Use of SAP HANA Information Models in ABAP,	<b>CO4</b>
	<ul> <li>Advanced Topics,</li> </ul>	004
	• Transporting SAP HANA Objects with ABAP Transport Requests.	
Experiment 8	Using SAP HANA Full Text Search,	CO4
•	• ABAP List Viewer with Integrated Database Access (ALV IDA),	
	Case Study: Optimize a Report on Flight Customer Revenue	
Experiment 9	Describing SAP HANA,	<b>CO1</b>
	• Understanding the Need for a Modern Digital Platform,	
	Describing How SAP HANA Powers a Digital Platform,	
Experiment 1		CO1
	Deploying SAP HANA,     Identifying the Key Balagin on SAP HANA Incoherentation	
Evnovimont 1	Identifying the Key Roles in an SAP HANA Implementation.	CO2
Experiment 1		
Experiment 1		CO2
Lind of C	Management Tools	
List of Submi		
viinimum nun	ber of Experiments : 10	

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
СО	3	-	-	-	1	-	-	-	1	2	-	1	2	1
1														
CO	3	2	-	3	3	-	-	-	3	3	-	1	1	2
2														
CO	3	3	3	3	3	1	-	1	2	3	-	1	-	1
3														
CO	3	3	3	3	3	1	-	1	3	3	2	1	2	-
4														
1: Sli	ght(Lo	ow)		2: Moo	lerate(	Mediu	m)		3: Subs	tantial(H	<u> </u>			

Assessment Guideline: Course coordinator will decide the suitable assessment method for internal evaluation for the course completion

*Note: Provide detailed feedback on each experiment and overall performance, focusing on:

- Technical skills and proficiency.
- Creativity and problem-solving abilities.
- Communication and presentation skills.
- Collaboration and peer review contributions.

		Governm	ent College of Engineerin	ig, Karad							
		Final Year (	Sem – VII) B. Tech. Civil	Engineerin	g						
	Au	dit Course Lab	I: CE2754: EV design an	d 3D Model	llinglab						
Laborat	ory Scher	ne:		Examination	on Scheme:						
Practica	-	2 Hrs/week		ISE							
Total Cr		Audit Course		ESE							
	Course Outcomes (CO): Students will be able to										
CO1	Demonst	trate various soft	wares needed for 3D modell	ing							
CO2	Design 3	D model of EV c	components								
CO3	Design o	of EV Assembly a	and integration								
CO4	Create V	isualization rend	ers of EV								
			<b>Course Contents</b>			CO					
Experim	ent 1	Explore 3D mod	eling softwares			CO1					
Experim	ent 2	Introduction Sol	idwork software			CO1					
Experim	ent 3	3D modeling of	EV components			CO2					
Experim			omponents in solidworks			CO2					
Experim	ent 5	Basic sketching	techniques need for EV con	nponents		CO2					
Experim	ent 6	EV layout design	1			CO3					
Experim	ent 7	Structure design	of EV in solidworks			CO2					
Experim	ent 8	parts design of E				CO2					
Experim	ent 9	Surface modeling	g of EV components			CO2					
Experim			ncing of EV components.			CO3					
<b>Experiment 11</b> Vehicle integration of EV partsCO3											
Experim			hniques for 3D data			CO4					
	ubmissio										
Minimun	n No. of E	Experiments: 10									

	ping v													
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO	2	2	1	2	3	1	2	1	2	1	1	2	-	1
1														
CO	3	2	1	3	3	2	2	1	1	1	1	2	1	2
2														
CO	2	3	3	1	3	1	3	2	2	2	2	3	-	1
3														
CO	3	3	3	3	3	1	3	1	2	2	2	3	2	-
4														

2: Moderate (Medium)

Assessment Guideline: Course coordinator will decide the suitable assessment method for internal evaluation for the course completion.

3: Substantial (High)

*Note: Provide detailed feedback on each experiment and overall performance, focusing on:

• Technical skills and proficiency.

1: Slight (Low)

- Creativity and problem-solving abilities.
- Communication and presentation skills.
- Collaboration and peer review contributions.

		Governme	ent College of Eng	gineering, Ka	rad			
			em – VII) B. Tec					
	Auc	it Course Lab I: (	CE2764: Foundat	ion of Electr	ical Vehicl	e Lab		
Laboratory	Scheme:	-1			Examinat	tion S	cheme:	
Practical		04 Hrs/week			ISE		-	
Total Credit		Audit Course	. 1.11		ESE		-	
		tics, Basic Program						
Course Out	Dourformen av	):Students will be a	ible to	th mions cont				
CO1 CO2		xperiments by inte he MATLAB prog			roller			
CO2 CO3	Develop a	nd execute the Sin	ulink model for <i>c</i>	lifferent EV	units			
CO4		power supply EV			units			
001	Design in		ourse Contents					CO
Implement	ation of foll	owing concepts						
Experimen	t 1 Intro	duction to booting	process of raspb	erry pi				CO1
Experimen	t 2 Perfo	orm experiment to c	ontrol the speed o	f dc motor				CO1
Experimen	t 3 Inter	face IR/ PIR sensor	with microcontro	ller				CO1
Experimen	t 4 Inter	face ultrasonic sens	or with microcont	roller and find	l distance			CO1
Experimen	t 5 Deve	loping SIMULIN	K Models for Vel	nicle Units				CO3
Experimen	t 6 Prog	camming EV System	ns in MATLAB					CO2
Experimen		ication of Data Ana	•		•			CO2
Experiment		gn a power supply ι						CO4
Experimen	t9 Mod	elling and simulation	n of EV powertra	in component	s in MATL	AB		CO3
Experimen		ysis of EV powertra	-	ANSYS				CO3
Experimen	t 11 Batte	ry Management Sy	stem modelling					CO3
Experimen	t 12 Mod	elling of Li-ion batt	ery pack using M	ATLAB and A	ANSYS			CO3
List of Sub								
Minimum 1	No. of Expe	riments: 10						

таррі	ng ui C	Us and												
PO	<b>PO</b> 1	PO 2	PO 3	PO 4	PO 5	<b>PO 6</b>	<b>PO</b> 7	<b>PO 8</b>	PO 9	PO 10	PO 11	PO	PSO1	PSO2
$\rightarrow$												12		
CO 1	1	2	3	1	3	-	1	-	2	-	2	2	-	1
CO 2	1	2	3	2	3	-	1	-	2	-	2	2	1	2
CO 3	1	2	3	3	3	-	1	-	2	-	2	2	-	1
CO 4	1	2	3	3	3	-	1	-	2	-	2	2	2	-
1: Sligh	nt(Low)		2: N	/lodera	te (Me	dium)		3: S	ubstan	tial (Hig	gh)			

Assessment Guideline: Course coordinator will decide the suitable assessment method for internal evaluation for the course completion.

*Note: Provide detailed feedback on each experiment and overall performance, focusing on:

- Technical skills and proficiency.
- Creativity and problem-solving abilities.
- Communication and presentation skills.
- Collaboration and peer review contributions.

		<b>Government C</b>	ollege of Engine	ering, Karad					
		Final Year (Sem –			ng				
	Audit Co	urse Lab I: CE2774	4: Fundamental	s of Image Pro	cessing l	Lab			
Laboratory S	cheme:			Exami	nation Sc	heme:			
Practical		04Hrs/week		ISE		-			
Total Credits		Audit Course		ESE		-			
Prerequisite :									
		Students will be able t							
		fundamentals of Image							
		nalyse rendering and		and 3D images					
		various transforms & s							
CO4 D	Design and	Evaluation of Various		ection and segme	entation te	chniques	<u> </u>		
<b>T 1</b> <i>4</i> 4			e Contents				CO		
Implementati		wing concepts							
Experiment 1	Sampl	ing and Quantization c	peration using Im	age processing.			CO1		
Experiment 2		Augmentation techniqu					CO1		
Experiment 3		ram Analysis for Vari					CO1		
Experiment 4	Apply	volume rendering and	volume visualizir	ng approaches on	2D/3D In	nages	CO2		
Experiment 5		ize and explore 2D im					CO2		
Experiment 6		nent multi-resolution t			lution ima	iges	CO2		
Experiment 7	EEG b	rain signal analysis us	ing wavelet transf	orm			CO3		
Experiment 8		eart signal enhanceme					CO3		
Experiment 9	Brain '	Tumor detection and c	lassification				CO3		
Experiment 1		ilateral Filter – To elin			nedical in	nage	CO4		
Experiment 1	1 CLAH	E - To improve the co	ontrast of the medi	cal image			CO4		
Experiment 1	2 Convo	lutional Neural Netwo	rk (CNN) – To se	gment the tumor	part		CO4		
List of Submi									
Minimum No.	of Experin	nents:10							

$PO \rightarrow$	<b>PO</b> 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO	PSO1	PSO2
CO↓												12		
CO 1	1	2	3	1	3	-	1	-	2	-	2	2	2	1
CO 2	1	2	3	2	3	-	1	-	2	-	2	2	1	2
CO 3	1	2	3	3	3	-	1	-	2	-	2	2	-	1
CO 4	1	2	3	3	3	-	1	-	2	-	2	2	1	1
1: Slight(Low) 2: Moderate (Medium								3: S	ubstan	tial (Hig	gh)			

Assessment Guideline: Course coordinator will decide the suitable assessment method for internal evaluation for the course completion.

*Note: Provide detailed feedback on each experiment and overall performance, focusing on:

- Technical skills and proficiency.
- Creativity and problem-solving abilities.
- Communication and presentation skills.
- Collaboration and peer review contributions.

			Governmer	t College of Engineering, Karad		
			Final Year (Ser	n – VIII) B. Tech. Civil Engineering		
	Audi	t Course	Lab II: CE281	: Advanced AI Techniques and Appli	cations Lab	
Laborate				Examinatio		
Practical			04Hrs/week	ISE	-	
Total Cre	dits		Audit Course	ESE	-	
Prerequi	site : N	Aathemat	ics, Basic Program	ning skills		
Course (	Outcon	ies (CO)	Students will be a	ole to		
CO1	Appl	y advance	ed techniques in N	P and Computer Vision to analyse and pro-	cess diverse data	types.
CO2	Deve	lop AI so	lutions for solving	complex decision-making problems in dyna	mic environmen	t.
CO3	Imple	ement ind	lustry-specific AI	olutions ensuring ethical considerations and	regulatory stand	ards.
<b>CO4</b>				s for time series forecasting and interpre-		
	throu	gh explai	nable AI methods		-	
			(	ourse Contents		CO
Impleme	ntatio	n of follo	wing concepts			
Experim	ent 1	Advanc	ed NLP Experim	nt		
I.				ext classification model using advanced NL	P techniques.	CO1
				nd pre-trained models from Hugging Face.	1	
Experim	ent 2		Classification wit			
•		• De	sign and train a co	volutional neural network (CNN) for image	e classification.	CO1
		• Ex	periment with data	augmentation techniques to improve model	performance.	
Experim	ent 3	Object	Detection and Se	mentation		
-		• Im	plement object det	ection algorithms (e.g., YOLO, Faster R-CN	IN).	CO1
		• Per	rform image segm	ntation using models like U-Net or Mask R	-CNN.	
Experim	ent 4		cement Learning			
				inforcement learning agent using OpenAI (		CO2
			A	rent RL algorithms like Q-learning or polic	y gradients.	
Experim	ent 5		s Process Autom			
				process using robotic process automation (R		CO2
			-	ming models for intelligent decision-making	g in workflows.	
Experim	ent 6		y-Specific AI Sol			
			· ·	naintenance model for manufacturing.		CO3
				ection system for financial transactions.		
Experim	ent 7		-Edge AI Resear			600
				nt in a cutting-edge AI research area (e.g., G		CO3
<b>F</b> •	1.0			t the research findings and their implication	18.	
Experim	ent 8			ng on Cloud Platforms	1 1 1 4 6	COD
				ed machine learning training pipeline on a c		CO2
Evnovim	ant O			n and orchestration tools like Docker and K	ubernetes.	
Experim	ent 9			nent and Monitoring rning model in a production environment.		CO2
				ls to track model performance and detect an	omalies	
Experim	ont		and Fairness in A	*	iomanes.	
Experim 10	cnt			Applications ation for ethical considerations and fairness		CO3
10				nt measures to address identified ethical cor		
Experim	ent		<u> </u>	vith Deep Learning		
11	CIII			ng model for time series forecasting (e.g.,	using LSTM or	CO4
11			RU).	ing model for time series forecasting (e.g.,		
				ance with traditional time series models.		
Experim	ent		able AI (XAI)			
12				lity techniques (e.g., SHAP, LIME) for a co	mplex model.	CO4
				et the model's predictions to ensure tra		
			stworthiness.		T	
		uu	51 11 01 01 011110 55.			I

List of Submission:	
Minimum No. of Experiments: 10	

Mapping	5 01 C (	<b>JS and</b>												
$PO \rightarrow$	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	<b>PO</b> 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2
CO↓														
CO 1	2	3	3	3	3	1	-	-	-	-	-	2	2	1
CO 2	2	2	2	2	3	2	-	-	2	2	2	2	1	2
CO 3	3	3	3	3	3	-	1	2	1	2	3	2	-	2
CO 4	2	3	2	3	3	2	2	2	2	2	1	2	1	1
1: Slight(Low) 2: Moderate (Medium)								3:	Subst	antial (H	ligh)			

Assessment Guideline: Course coordinator will decide the suitable assessment method for internal evaluation for the course completion.

*Note: Provide detailed feedback on each experiment and overall performance, focusing on:

- Technical skills and proficiency.
- Creativity and problem-solving abilities.
- Communication and presentation skills.
- Collaboration and peer review contributions.

		Governmer	nt College of Engineeri	ng, Karad		
			m – VIII) B. Tech. Civi			
	Audit C		<b>CE2829:</b> Advance AI an		tion Lab	
Laboratory Sc	heme:			Examinat	ion Scheme:	
Practical		04Hrs/week		ISE	-	
Total Credits		Audit Course		ESE	-	
Prerequisite :	Mathemat	ics, Basic Progran	nming skills			
		Students will be a				
		AIoT Foundation				
	•	on Implementation				
		nsor Technologies				
CO4 Desi	gn and de	ploy Innovative Se				
			Course Contents			CO
Implementatio	n of follo	wing concepts				
Experiment 1			cations across industries.			CO1
Experiment 2	Study t	he significance of	IoT in the modern intercor	nnected world.		CO1
Experiment 3			f AIoT and its potential im			CO1
Experiment 4	Explore	e the role of IoT ga	ateways in bridging mobile	e devices and IoT	networks.	CO1
Experiment 5			rcises for setting up	and configuring	g mobile-to-IoT	CO1
	connect					
Experiment 6			e overview of sensor techn			CO3
Experiment 7			ploration of various types	s of sensors and	d their academic	CO3
<b>F</b> : (0	underpi		1	1 .	C	GOA
Experiment 8		in practical demo plications in IoT sy	onstrations and experiment	s showcasing ser	isor functionality	CO3
Experiment 9			c signal system for colo	orblind individu	als using AIoT	CO2
	technol				and and grand i	001
Experiment 10	Implem	ent an AIoT-base	d plant health analysis syst	em.		CO2
Experiment 11			ss control system using AI			CO2
Experiment 12			weather forecasting system			CO2
Experiment 13	Integrat predicti		her data from sensors v	vith AI algorith	ms for accurate	CO2
Experiment 14	Engage systems		cises for building, testing,	and refining we	eather forecasting	CO2
Experiment 15			t solutions utilizing AIoT			CO2
Experiment 16			eal-world examples of suc	cessful smart sol	utions in various	<b>CO4</b>
	domain					
Experiment 17	Particip solution		ed learning to conceptual	ize, design, and	implement AIoT	CO4
List of Submis						
Minimum No.	of Experin	nents: 14				

Mapping of COs and 1 Os														
$PO \rightarrow$	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	<b>PO</b> 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2
CO↓														
CO 1	3	3	2	2	2	-	-	-	-	2	-	2	2	1
CO 2	3	2	2	2	2	1	-	-	3	2	1	2	1	2
CO 3	2	2	3	2	2	-	1	1	3	2	-	2	1	1
CO 4	2	2	2	3	2	1	1	1	2	2	2	2	2	-
1: Slight(Low) 2: Moderate (Medium)						)	3:	Subst	antial (H	ligh)				

Assessment Guideline: Course coordinator will decide the suitable assessment method for internal evaluation

for the course completion

*Note: Provide detailed feedback on each experiment and overall performance, focusing on:

- Technical skills and proficiency.
- Creativity and problem-solving abilities.
- Communication and presentation skills.
- Collaboration and peer review contributions.

				nt College of Engineering,			
				m – VIII) B. Tech. Civil En			
			Lab II: CE2839:	Advanced ARVR Techniq			
Laborato	ory Scl	heme:			<b>Examination</b>	Scheme:	
Practical			04Hrs/week		ISE	-	
Total Cre			Audit Course		ESE	-	
<b>_</b>			ics, Basic Program	<u> </u>			
	-		Students will be a				
CO1				ications of Virtual Production			
CO2				e Engine for Virtual Productio			
CO3				nd Design Principles for Virtua			
CO4	Dem	onstrate I		tation Skills in Virtual Product	tion Projects		
Impleme	ntatio	n of follo	wing concepts	Course Contents			CO
-			0				1
Experime	nt I			Evolution of Virtual Produc			
				a historical overview of virtual			
				of virtual production in film	, television, and	other media	CO1
			stries.		1	1 1	
				ons and benefits of virtual p	production in me	odern media	
Experime	mt 7	1	luction.	un and Onenation			
Experime	nt Z			up and Operation			
		-	-	tudios and their setup.			CO3
				ues for green screen setups.	·····		
Experime				studio to capture footage for y	virtual production	1.	
Experime	m 5		iction to Unity Ga	me Engine and its features.			
			•	ty for virtual production purpos			CO2
		-		nents within Unity for product			
Experime	nt /		me Rendering Teo		ion purposes.		
	III <del>4</del>			rendering and its importance in	virtual productio	)n	
				achieving realistic visuals in r			CO4
		-	-	ng capabilities for high-quality		ments.	
Experime	nt 5		Set Design Princ		visual output.		
	ni J		0	n principles and layout.			
			• •	ual environments for different	production needs	2	CO3
			•	dressing, and lighting to enhan	A		
Experime	nt 6		ew of Virtual Can			estileties.	
Enperime				ypes of virtual cameras and the	eir functionalities	5	
				ance of virtual cameras in scen			CO3
				a operation within Unity for vir	•	ia maning.	
Experime	nt 7	•		Virtual Production	idai productioni		
		-		g setups and their effects on vi	rtual production.		
				us lighting techniques in a virt	-		CO1
		-		ting to enhance the realism and			
Experime	nt 8	~ ~ ~	• • • • •	nagement in Unity			
				or asset importation into Unity.			
			*	Unity's project structure.			CO2
		-		nization techniques for efficien	t usage in virtual	production	
Experime	nt 9		g Virtual Enviro	<u> </u>		1	
T	-		-	and environment tools to build	virtual landscap	es.	CO2
				onments with assets and objects	-		

	• Apply textures, materials, and effects to enhance the realism of virtual environments.	
Experiment 10	<ul> <li>Practical Application of Virtual Production Techniques</li> <li>Plan and execute a virtual production project using green screen studios and Unity.</li> <li>Incorporate elements of virtual set design, lighting, and camera composition.</li> <li>Produce a final virtual production project demonstrating mastery of virtual production techniques.</li> </ul>	CO4
List of Submiss	sion:	
Minimum No. c	f Experiments:10	

$PO \rightarrow$	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2
CO↓														
CO 1	2	2	2	2	2	1	-	-	2	1	1	1	-	1
CO 2	3	2	1	2	2	1	-	-	2	1	1	1	1	2
CO 3	2	2	2	2	2	1	-	-	2	1	1	2	-	1
CO 4	2	2	2	3	2	1	-	-	2	1	2	2	2	-
1. Clickt(	Τ)		2. N	I a dam	(N.I		)	2.	Castant	antial (I)	(; _1, )			

1: Slight(Low)

2: Moderate (Medium)

3: Substantial (High)

Assessment Guideline: Course coordinator will decide the suitable assessment method for internal evaluation for the course completion

*Note: Provide detailed feedback on each experiment and overall performance, focusing on:

- Technical skills and proficiency.
- Creativity and problem-solving abilities. •
- Communication and presentation skills.
- Collaboration and peer review contributions. •

	Governmen	t College of Engineering, Karad				
	Final Year (Ser	n – VIII) B. Tech. Civil Engineering				
	Audit Course Lab II : C	E2849: ABAP programming in Eclipse	LAB			
Laboratory Scher	ne:	Examinatio	on Scheme:			
Practical	4 Hrs/week	ISE	-			
<b>Total Credits</b>	Audit Course	ESE	-			
Prerequisite : Java						
	(CO):Students will be able					
		ipse in SAP development, including instal		avigation		
		ting, and debugging repository objects usi				
	A	uality using static testing tools, ABAP U	Jnit Tests, a	and the ABAP		
Profiler wit						
		P applications, including Web Dynpro	componer	nts and ABAP		
Dictionary	Objects, utilizing Eclipse's de	<u> </u>		<u> </u>		
<b>T</b>		e Contents		<u>CO</u>		
Experiment 1	· ·	Understanding How SAP Uses Eclipse, I	nstalling	CO 1		
E • 43	Eclipse		11 1	CO 2		
Experiment 2	0 5	P Project, Organizing Work with the Eclipse Workbench,				
Experiment 3	The ABAP Development		1	CO 2		
Experiment 5	ABAP in Eclipse.	jects, Editing a Repository Object, De	bugging	02		
Experiment 4	Function Groups and Fun	ation Modules		CO 2		
Experiment 5		in Eclipse, Working With Data Element,	Wantring	<u>CO 2</u> CO 4		
Experiment 5		y Views with ABAP Core Data Services	working	004		
Experiment 6		c, Creating a Global Class, Refactoring		<b>CO 4</b>		
Experiment 7		nt, Creating Web Dynpro Components		CO 4		
Experiment 8	Navigating in Eclipse, Se			CO 1		
*	8 8 1 /	6 1	· ·			
Experiment 9		ol, Identifying Sources of Help and Inform		<u>CO 1</u>		
Experiment 10	Performing Static Testing	erforming Static Testing with the Syntax with the ABAP Test Cockpit.		<b>CO 3</b>		
Experiment 11	Performing ABAP Unit Profiler.	Tests, Analysing Performance with the	e ABAP	CO 3		
Experiment 12		oolkit, Lesson: Extending Eclipse Func	tionality	CO 1		
List of Submission	•		I			
Minimum No. of E	Experiments : 10					

PO	PO	PO	PO	PO	PO	PO	PO	PO	PO 9	РО	РО	PO	PSO1	PSO2
$\rightarrow$	1	2	3	4	5	6	7	8		10	11	12		
CO														
$\downarrow$														
CO1	3	2	-	-	2	-	-	-	2	2	-	1	3	1
CO2	3	1	3	2	2	-	-	-	2	2	-	1	2	-
CO3	3	3	3	3	2	-	-	1	3	3	-	1	1	-
CO4	3	2	3	3	3	1	1	1	3	3	1	1	1	2

 1: Slight(Low)
 2: Moderate(Medium)
 3: Substantial(High)

 Assessment Guideline:
 Course coordinator will decide the suitable assessment method for internal evaluation for

the course completion

*Note: Provide detailed feedback on each experiment and overall performance, focusing on:

- Technical skills and proficiency.
- Creativity and problem-solving abilities.
- Communication and presentation skills.
- Collaboration and peer review contributions.

		nent College of Engineering							
		Sem – VIII) B. Tech. Civil E							
Aud	it Course Lab II:	CE2859: EV Design Analysi	is and simulat	tion Lab					
Laboratory Sche			Examination	Scheme:					
Practical	04 Hrs/week		ISE						
Total Credits	Audit Course		ESE						
	Prerequisite : Basic Electrical Engineering								
	es (CO): Students v								
		res needed for analysis and s	simulation						
•	D mesh of EV com	<u> </u>							
-		rent simulation softwares							
CO4 Thermal a	analysis of battery	components							
		<b>Course Contents</b>			CO				
Experiment 1	Introduction to A	NSYS			CO1				
Experiment 2		elopment using Hyper mesh- 2			CO1				
Experiment 3	Mesh model deve	elopment using Hyper mesh- 3	3D		CO2				
Experiment 4		mulation of EV powertrain co		<b>MATLAB</b>	CO2				
Experiment 5	3D modelling of	EV powertrain components in	n ANSYS		CO3				
Experiment 6	Simulation of EV	v powertrain components in A	NSYS		CO2				
Experiment 7	EV design and st	ructural analysis:			CO2				
Experiment 8		EV engineering with Abaqus			CO2				
Experiment 9		amic and simulation:			CO1				
<b>Experiment 10</b>	CFD analysis for				CO3				
Experiment 11		s of Liquid-Cooled Radiator i	n ANSYS		CO3				
Experiment 12	· · · · · · · · · · · · · · · · · · ·	ternal Cooling Mechanism			CO4				
List of Submission									
Minimum No. of	Experiments: 10								

ж.															
	$PO \rightarrow$	PO 12	PSO1	PSO2											
	CO↓	1	2	3	4	5	6	7	8	9	10	11			
	CO1	2	2	1	2	2	1	2	1	2	1	1	2	2	2
	CO2	3	2	1	3	2	2	2	1	1	1	1	2	-	1
	CO3	2	3	3	3	3	1	3	2	2	2	2	3	-	-
	CO4	3	3	3	3	3	1	3	1	2	2	2	3	1	2

2: Moderate (Medium)

Assessment Guideline: Course coordinator will decide the suitable assessment method for internal evaluation for

3: Substantial (High)

the course completion

*Note: Provide detailed feedback on each experiment and overall performance, focusing on:

• Technical skills and proficiency.

1: Slight (Low)

- Creativity and problem-solving abilities.
- Communication and presentation skills.
- Collaboration and peer review contributions.

	Governmei	t College of Engineering, Kara	ad	
		n – VIII) B. Tech. Civil Engine		
		<b>CE2869:: Advanced Electrical</b>		
Laboratory Scho	eme:	Ex	amination Scheme:	
Practical	04Hrs/week	ISE	E -	
Total Credits	Audit Course	ES	Е -	
Prerequisite : M	athematics, Basic Program	ming skills		
<b>Course Outcome</b>	es (CO):Students will be a	ble to		
CO1 Under	stand basics of Various co	nvertors & VSI grid integration		
CO2 Analyz	ze Battery controller, cell	palancing and SoC control		
		s using Modelling& Simulation		
CO4 Design		hicle and Battery modding		
		Course Contents		CO
Implementation	of following concepts			
Experiment 1	Simulation of SPW MATLAB/Simulation.	M technique for electric vel	hicle converter using	CO1
Experiment 2	Simulation of three MATLAB/Simulation.	phase VSI for grid integ	ration in EV using	CO1
Experiment 3	Design of bidirection MATLAB/simulation.	al battery circuit using Buck/	Boost converter using	CO1
Experiment 4	Battery controller base using MATLAB Simul	d on SoC for charging and dischation.	arging of battery in EV	CO2
Experiment 5		tion of BMS for passive cell	balancing in EV using	CO2
Experiment 6	SoC control of Lithium	Ion battery in MATLAB/ Simulink	x for EV	CO2
Experiment 7		onal operation in Electric Vehicl		Co3
Experiment 8	Modelling and simulati	on to calculate electric vehicle spee	ed from motor torque.	CO3
Experiment 9	Speed control of electri	c vehicle using BLDC or PMSM in	MATLAB/Simulink.	Co4
Experiment 10	Simulation of electric v	ehicle using MATLAB/Simulink.		CO4
List of Submissi				
Minimum No. of	Experiments :10			

#### Manning of COs and POs

Mapping of COs and TOs														
$PO \rightarrow$	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2
CO↓														
CO 1	1	2	3	1	3	-	1	-	2	-	2	2	2	2
CO 2	1	2	3	2	3	-	1	-	2	-	2	2	-	1
CO 3	1	2	3	3	3	-	1	-	2	-	2	2	-	-
CO 4	1	2	3	3	3	-	1	-	2	-	2	2	1	2
1. Cliabt	I ouv)		2.1	Andam	ata (M	adime	)	2.	Subat	antial (I)	(iah)			

1: Slight(Low) 2: Moderate (Medium) 3: Substantial (High)

Assessment Guideline: Course coordinator will decide the suitable assessment method for internal evaluation for

#### the course completion

*Note: Provide detailed feedback on each experiment and overall performance, focusing on:

- Technical skills and proficiency. •
- Creativity and problem-solving abilities. •
- Communication and presentation skills.
- Collaboration and peer review contributions. •

			Governmer	nt College of Engine	eering, Karad	d					
				m – VIII) B. Tech. (							
		Audit	<b>Course Lab II:</b>	CE2879: Advanced	d Image Proc	essing La	ab				
Laborato	ry Schei	me:			Exa	mination	Scheme:				
Practical			04Hrs/week		ISE		-				
Total Cree	dits		Audit Course		ESE		-				
Prerequis	s <mark>ite :</mark> Ima	age Pro	cessing								
Course O	Course Outcomes (CO): Students will be able to										
CO1				for image classification							
CO2				nd restoration techniqu	ies						
CO3			age compression 7								
<b>CO4</b>	Implem	enting		on Techniques and Ob	ject recognitio	n.					
				<b>Course Contents</b>				CO			
Implemen	ntation o	of follo	wing concepts								
Experime	ent 1	Suppo	rt Vector Machine	e (SVM) – To classify	the cancer tum	or		C01			
Experime	ent 2	Autom	nated Segmentation	n and analysis of skele	tal structure in	nages and	scans	CO4			
Experime	ent 3		fying and locating	morphological pattern				CO1			
Experime	ent 4		tumor and also tiss	sue segmentation				<b>CO4</b>			
Experime	ent 5	Age an	nd also gender clas	ssification using Brain	MRI			CO2			
Experime	ent 6	Comp	uter aided diagnos	is using Mammograph	ıy			CO2			
Experime	ent 7	Lung o	cancer detection us	sing medical image pro	ocessing			CO2			
Experime	ent 8			ising medical image pr				CO3			
Experime	ent 9			npressing using image	e processing			CO3			
Experime	ent 10	Skin c	ancer detection					CO4			
List of Su											
Minimum	No. of I	Experin	nents:10								

Mapping of COs and 1 Os														
$PO \rightarrow$	PO 1	<b>PO 2</b>	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2
CO↓														
CO 1	1	2	3	1	3	-	1	-	2	-	2	2	1	-
CO 2	1	2	3	2	3	-	1	-	2	-	2	2	-	1
CO 3	1	2	3	3	3	-	1	-	2	-	2	2	-	-
CO 4	1	2	3	3	3	-	1	-	2	-	2	2	2	1
1: Slight(Low)			2: Moderate (Medium)					3:	3: Substantial (High)					

Assessment Guideline: Course coordinator will decide the suitable assessment method for internal evaluation for the course completion

*Note: Provide detailed feedback on each experiment and overall performance, focusing on:

- Technical skills and proficiency.
- Creativity and problem-solving abilities.
- Communication and presentation skills.
- Collaboration and peer review contributions.