				Covorn	nment College of Engine	oring Karad			
			T.		Sem. – VII) B. Tech. Ele		erino		
					Computer Network &C				
				EE2701.	Computer Network & C	- Communication	, <u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>		
Tea	chin	g Schen	ne				Examination Sch	eme	
	tures		03Hrs/week				CT – 1	15	
	orials		00Hrs/week				CT – 2	15	
Tota	al Cre	edits	03				TA	10	
							ESE	60	
							Duration of ESE	02 Hrs	30 Min
			ies (CO)						
Stu	dents	will be	able to						
1.	•			•	chitecture of a computer				
2.		•			the OSI model and TCP/				
3.				or a given org	ganizational structure to s	elect the most	appropriate network	king archi	tecture
1		technolo		-C 1 1	1		1-		
4.					levices and their function	s within a nety	vork		
5	Crea	ite the si	kills of sub netti	ing and routir	Course Contents				Hours
Un	it 1	Introd	luction to Data	Communica					Hours
UII	11 1				rds, Categories of Netv	vorks OSI &	TCP/IP Protocol	cuitec	(6)
			ogy, Different n			voiks, OSI &	t TCI/II TTOLOCOI	suites.	(0)
Un	it 2		~ .		ccess Technique:				
0 22			•		ntrol, Elementary data lin	nk protocols (ARQs: Stop and W	ait, go	(6)
			J, Sliding windo			1		, 0	(-)
		Mediu	ım Access Tec	chnique: Wir	red LANs: Ethernet, Wi	ireless LANs,	CSMA /CD, CSM	IA/CA,	
				andom Access	s, Channelization.				
Un	it 3		rk Layer:						(4)
				ARP, RARP,	Error reporting protocol	ICMP .IGMP	. Forwarding and U	nicast	
T 7	• 4		g protocols.						
Un	it 4		port Layer:	A ddmagain a	Establishing & malassin	a a commontio	n Tuonanant muotoa	ol for	(5)
			et TCP & UDP	Addressing,	Establishing & releasing	g a connectio	ii Transport protoco	or ior	(5)
Un	it 5		cation Layer:						
OII	11.5			Protocols DH	ICP, DNS, TELNET,	FTP. SMTP.	HTTP. WWW. V	σIP.	(5)
			•		Goals of Security Basic C		, , , , , , , ,	,	(0)
Un	it 6				etwork administration:	71 2 1 7			
				•	Cryptography, Basics	of Security at	tacks, Security algo	orithm,	(4)
			et security IPSec	c					
	t Boo								
1.					ations And Networking, 5		ta McGraw Hill 201	.7	
2.				mputer Netw	vorks, 8th Edition, Prentic	ce Hall 2003	T		
		ce Book		10	7	Dur C T	1-11 Of 1. J. N. D	N-11-1 - 000	\
1.					Communication, 8th Editi	· ·	·	elni, 200	0/.
2.			Comer, Compu	ter Networks	And Internet, Pearson Ed	iucation Asia,	4mEaition2008		
	ful L		.rfc-editor.org/r	facaarah html			<u> </u>		
1. 2.	_		.cisco.cn.com	icsearch.huffl					
۷٠	mtp	•.// W W W	.cisco.cii.coiii						

Government College of Engineering, Karad

Final Year (Sem. – VII) B. Tech. Electrical Engineering

EE2701: Computer Network & Communication

Course Outcomes (CO)

Students will be able to

- 1. Apply the issues and challenges in the architecture of a computer network
- 2. Analyze the function(s) of the layers of the OSI model and TCP/IP Model
- 3. Analyze the requirements for a given organizational structure to select the most appropriate networking architecture and technologies
- **4.** Evaluate the different types of network devices and their functions within a network
- 5 Create the skills of sub netting and routing mechanisms

PO →	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO	PO	PO	PSO
CO↓										10	11	12	
CO 1	2	3	2	1	1	-	-	-	-	-	-	2	-
CO 2	3	2	3	1	2	3	1	-		-	-	2	-
CO 3	2	3	2	2	1	2	1	-	-	-	-	2	3
CO 4	2	2	2	1	2	1	-	-	-	-	-	-	3
CO5	2	3	2	2	2	1	-	-	-	-	1	1	-

Knowledge Level	CT 1	CT 2	TA	ESE
Remember	5			
Understand	5	5		
Apply	5	5	3	20
Analyse		5	3	20
Evaluate			4	20
Create				
TOTAL	15	15	10	60

ELECTIVE III

					VE III				
			Governr	nent College of	Engineer	ring, Kara	ad		
		Fin		em. – VII) B. Te					
				- EE 2712: Res					
							<i>y</i> ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		
Teach	ning Sche	me					Examination Sch	neme	
Lectur		03Hrs/week					CT – 1	15	
Tutori		00Hrs/week					CT – 2	15	
	Credits	03					TA	10	
							ESE	60	
							Duration of ESE	02 Hrs	30 Min
Cours	se Outcor	nes (CO)	1				ı		
Stude	nts will be	able to							
1. Id	dentify the	e need of regula	tion and der	egulation.					
				Non-technical is	ssues in De	eregulated	Power Industry.		
				electricity marke			•		
						various en	tities in the market		
				Course C					Hours
Unit 1	1 Dere	gulation of Elec	tricity Supp	ly Industry					(6)
	Fund	mentals of restr	ructured syste	m.					
	Back	ground of deregi	ılation and cı	irrent situation ar	ound the w	orld, Bene	fits from competitiv	re	
	electr	icity market							
Unit 2				etitive environm					(7)
					operationa	l planning	activities of GENCO)	
Unit 3		smission Open							(8)
							nission, transmissio		
			mechanism	in various count	tries, secu	rity and c	ongestion manager	ment in	
TT •4		ulation							(5)
Unit 4		lary services n			.11 .	ı.	,	, .	(7)
					illary servi	ices manage	ement in various co	untries,	
Unit :		ve power as an a							(6)
Omt :		ricity Act 2003,		uia.					(6)
Unit (ous institutions		wer sector					(6)
CIII (ia Energy Exchar	nge (IEX)				(0)
Text 1	Books	110,1.11111041	31 1 3 11 61, 1116		1211)				
		nattacharva Iaa	n E. Daadler	Math H I Book	en —One	ration of re	structured power sy	vstems K	Tuwer
		Publishers	p L. Daudier	, 1/14411 11.5. 15001	en, ope	ration of ic	structured power s.	<i>y</i> 5001115#,11	au wei
	ence Boo								
		ad Shahidehpou d volatility , M	· .	•	estructured	electrical p	power systems: ope	ration,	l
		ipson, H. Lee V			ric utilities	and de-reg	gulation , Marcel D	ekker	
P	l Links								
Usefu	l Links	el.ac.in/courses	/108/101/108	8101005/					

Mapping of COs and POs

Ivia	pping of COs and POs
Co	urse Outcomes (CO)
Stu	idents will be able to
1.	Identify the need of regulation and deregulation.
2.	Define and describe the Technical and Non-technical issues in Deregulated Power Industry.
3.	Identify and give examples of existing electricity markets.
4.	Classify different market mechanisms and summarize the role of various entities in the market.

PO →	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO
CO ↓													
CO 1	2	2	2	1	1	2	2	2				2	3
CO 2	3	2	3	1	2	3	1	1				2	3
CO 3	3	2	2	2	3	2	1					2	3
CO 4	2	2	2	1	2	1							3

Knowledge Level	CT 1	CT 2	TA	ESE
Remember				
Understand				
Apply	5	5	3	20
Analyse	5	5	3	25
Evaluate	5	5	4	15
Create				
TOTAL	15	15	10	60

			Governi	ment College	of Engine	ering, Kara	nd		
		Fin		em. – VII) B. '		<u> </u>			
				lective III - S					
				<u> </u>					
Teach	ing Sche	me					Examination Sch	eme	
Lectur		03Hrs/week					CT – 1	15	
Tutoria	als						CT – 2	15	
Total (Credits	03					TA	10	
							ESE	60	
							Duration of ESE	02 Hrs	30 Min
		nes (CO)							
Studer	nts will be								
1.		nderstand concep							
2.		t a firm and solic estanding of anal					ytical skills and con	ceptual	
3.		ake students awa					ng.		
					Contents		<u> </u>		Hours
Unit 1	1 Cons	tructional featur	es of Synch	ronous Relucta	nce Motor	- Types, Ax	ial & Radial flux	motors,	(6)
		ating principles, rmance characte		eluctance Motor	rs, Voltage	& Torque	equations, Phasor d	liagram,	
Unit 2				nor Motors n	inginla of	onorotion I	variable reluctance	motor	(6)
							ons, Modes of exc		(0)
		•		•		• •	tors, closed loop c		
		cept of lead angle		петоргосевзог	control of	stepper mot	.015, C 105 CG 100p C	ontroi,	
Unit 3				ed Reluctance M	Iotor(SRM)	, Rotary &	linear SRM, princi	ple of	(6)
						•	tical methods, power	_	(-)
	_	erters & their con		•		•			
	chara	cteristics & close	ed loop contr	ol.					
Unit 4							hysteresis loop, M		(8)
							Magnetic circuit an		
				nmutation, pow	er converte	er circuits &	their controllers,	Motor	
T T 1. 1		racteristics &con		(D) (G) ()		6	ENGE OF		(6)
Unit 5							EMF & Torque eq		(6)
		•				•	windings, phasor di	agram,	
Unit (ue/speed characte					tors, Switched Rel	uotonoo	(8)
Omt		r, Permanent ma	•			* *		luctance	(0)
Text I		1, 1 Cilianent ma	ignet brasine.	35 de 1110to13, 1 e	Amanent m		onous motors.		
		aratnam Specia	l Electrical N	Machines' Univ	ersities Pre	ss (India) Pri	vate Limited, 2008		
		ler, _Brushless P					vate Emilieu, 2000		
		Press,Oxford, 1		agnet and Refue	unce moto	i Biives ,			
				Microprocessor	Controls'.	Clarendon Pr	ess London, 1984.		
	ence Boo	_ 11	- '-	*	,		,		
1. R	R.Krishna	n, _Switched Re	luctance Mot	tor Drives – Mo	deling, Sim	ulation, Ana	llysis, Design and Ap	pplication	', CRC
P	ress, Nev	v York, 2001.							
		· - · ·			•		ter PerengrinusLond	don, 1982.	
		nd S. Nagamori,	_Permanent	Magnet and Br	ushless DC	Motors', Cla	arendon Press,		
	London, 1		-14-: 1	-1.1(DITT 1			D-11-1 201 4		
		danan, _Special							
	l Links	t Magnet Synchr	onous & Dfu	PRINCES DC MOR	nuiives,K.I	xi isiiliail, CF	C 11088.	T	
	WW.OCW	mit edu							
			on controc or	Special Floatsi	cal Machine)			
∠. <u>\</u>	www.npte	<u>el.iitm.ac.in</u> (Vide	courses or	i special Electric	cai iviacnine	:5./			

Government College of Engineering, Karad Final Year (Sem. – VIII) B. Tech. Electrical Engineering EE2722: Elective III - Special Electrical Machines

Mapping of COs and POs

Cours	e Outcomes (CO)
Studen	nts will be able to
1.	To understand concept of special purpose machines and their industrial applications
2.	To set a firm and solid foundation in Electrical machines with strong analytical skills and conceptual
	understanding of analytical methods in special electrical Machines.
3.	To make students aware of protective system with industry oriented learning.

$PO \rightarrow$	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO
CO↓													
CO 1	2	2	2	1	1	2	2					2	3
CO 2	3	2	3	1	2	3	1					2	3
CO 3	3	2	2	2	3	2	1					2	3

Knowledge Level	CT 1	CT 2	TA	ESE
Remember				
Understand				
Apply	5	5	3	20
Analyse	5	5	3	20
Evaluate	5	5	4	20
Create				
TOTAL	15	15	10	60

			Governn	nent College o	f Engineer	ring, Kara	d		
		Fir		em. –VII) B. T					
				ve III - Indust					
			Troz (Electi	Ve III IIIdasti	1141 114101	iution unc			
Teach	ing Sche	ne					Examination Scl	heme	
Lectur		03Hrs/week					CT – 1	15	
Tutoria		00Hrs/week					CT – 2	15	
	Credits	03					TA	10	
							ESE	60	
							Duration of ESE	02 Hrs	30 Mir
Cours	e Outcon	nes (CO)						L	
Studer	its will be	able to							
1. Ide	entify dif	ferent compone	nts of an auto	mation system.					
				opriate PLC mod	lule.				
3. Pr	epare PL	C ladder diagrai	m for given ap	oplication.					
4. Se	lect the s	uitable motor di	rive for the sp	ecified application	on.				
·			•	Course (Hou
Unit 1	Intro	duction to Indu	ustrial Auton	nation and Cont	trol:				(8)
	Archi	tecture of Indus	trial Automat	tion Systems. Ty	pes of autor	nation syste	ems-fixed, progran	nmable,	
	flexib	le. Components	s of automatio	on systems viz. co	ontactors, re	elays, actua	tors and sensors an	d PLC	
Unit 2		Fundamentals:							(8)
							ules, Special I/O r	nodules,	
				PLC and their ty	pes, Redun	dancy in PL	C module.		
Unit 3		Programming:							(4)
		O addressing.							
							on delay, off delay	/ ,	
				, Down, High sp			ns, comparison		
				tions, Arithmetic				a4: a1	
		orogramming ia on chart, ladder			gram, mstru	ction fist, st	ructured text, sequ	entiai	
Unit 4		Applications:	programming	<u>g.</u>					(7)
UIII 4			evamnles usi	ng ladder logic:	language he	ased on rela	y, timer counter, lo	orical	(1)
				andling instruction		iscu on icia	y, timer counter, ic	igicai,	
	•			•		Control elev	vator control, tank	level	
				motor control, re			vator control, tank	10 101	
Unit 5		rical Drives and				•			(6)
				, characteristics,	four quadra	int operation	n		(-)
				ontrol, parameter					
				ations, paramete					
	Appli	cations: speed c	control of AC	motor/ DC moto	or				
Unit 6	Super	visory Contro	l and Data A	cquisition Syste	em:				(7)
				CADA architectu	ure/block di	agram, ben	efits of SCADA.		
		us editors of SC							
							ect linking and en		
					SCADA so	creen for sin	mple objects (defin	ning tags	
		ems) with PLC							
T4 T		cations of SCAI	DA: water dis	stribution, pipelir	ne control.				
Text E		malala I a - ! - C	omtuo11 T - 1	hov V D 171	no my la 1! - 1.	. Marri D 1	h: 2017 IGDN - 05	100174000	201
1. –							hi, 2017, ISBN : 97		
a	_	_	ntroners Petri	uzeII.F.D, Tata –	— McGraw	mili india, f	New Delhi, Fourth	eaition,20	IU,
	ODNI. OZO								
	SBN: 978	0071067386							

	SamarjitSen Gupta, second edition ,Penrarn International Publication, New Delhi, 2015, Fifth reprint, ISBN: 9788187972174
Ref	Ference Books
1.	—Introduction to Programmable logic controllers, Dunning.G. Thomson/Delmar learning, New Delhi, 2005, ISBN:
	13.
2.	—Supervisory Control and Data Acquisition Boyar.S.A, ISA Publication NcwDxellii (4'1' edition) ISBN: 975-
	1936007097
3.	—Industrial automation and process controll, Stenerson, Jon, PHIlearning, New Delhi ISBN: 9780130618900
4.	—Practical SCADA for industry , Bailey, David; Wright, Edwin, Newnes (an imprint of Elsevier)international edition, 2003, ISBN: 0750658053
5	—Programmable Controllers Theory and Implementation, Luis A. Bryan, Industrial Text Co. publication,
	Edition:first.
Use	ful Links
1.	https://nptel.ac.in/courses/108/105/108105062/
2.	https://nptel.ac.in/courses/108/105/108105063/

Government College of Engineering, Karad

Final Year (Sem. -VII) B. Tech. Electrical Engineering

EE2732: Elective III - Industrial Automation and Control

Mapping of COs and POs

1	via	pping of COs and TOs
Г	Co	urse Outcomes (CO)
	Stu	idents will be able to
	1.	Identify different components of an automation system.
	2.	Interface the given I/O device with appropriate PLC module.
	3.	Prepare PLC ladder diagram for given application.
Π,	4.	Select the suitable motor drive for the specified application.

$PO \rightarrow$	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO	PO	PO	PSO
CO↓										10	11	12	
CO 1	2	2	2	1	1	2	2					2	3
CO 2	3	2	3	1	2	3	1					2	3
CO 3	3	2	2	2	3	2	1					2	3
CO 4	2	2	2	1	2	1							3

Knowledge Level	CT 1	CT 2	TA	ESE
Remember				
Understand				
Apply	5	5	3	20
Analyse	5	5	3	20
Evaluate	5	5	4	20
Create				
TOTAL	15	15	10	60

			Covomn	mont Collog	ro of Engi	nooving Von	ad		
		Fin				neering, Kar lectrical Eng			
		FIII	iai Tear (Se		2: Smart (meering		
				EE 2/42	: Smart C	J F I Q			
Toools	na Caba		 				Examination Sch	0.000	
Lecture	ing Sche	03Hrs/week					CT – 1		
Tutoria		00Hrs/week					CT – 1 CT – 2	15 15	
Total C		03					TA	10	
Total C	reuns	03					ESE	60	
							Duration of ESE	02 Hrs	30 Min
Course	e Outcon	nes (CO)					Duration of ESE	02 1115	30 WIIII
	ts will be								
		he difference be	etween smart	grid & conve	entional grid	1.			
		metering conce							
							d wide area measure	ments.	
		art grid solution							
1			<u> </u>		se Content				Hours
Unit 1	Intro	duction to Sma	rt Grid:						(6)
	•	Introduction	to Smart G	rid. Evolutio	on of Elect	ric Grid.			
		Concept of S							
		Concept of I							
		-		_		in Smart Grid			
Unit 2	Smar	t Metering and			ii poneres	in Smart Grid			(8)
Omt 2	Siliai				ne Pricing	Smart Appliand	res		(6)
	•	Automatic M			ic i ficing, ,	omart / ippnan			
	•	Outage Mana							
	•	Plug in Hybri			7).				
	•	Vehicle to Gr			,				
Unit 3	Wide	Area Measure	•						(6)
	•	Geographic I							
	•					ation for moni	toring & protection,	Smart	
		storage like	Battery, SME	S, Pumped F	Hydro.		-		
	•	Compressed A	Air Energy St	torage.					
	•	Wide Area N	Measurement	System (WA	MS), Phase	e Measurement	t Unit (PMU).		
Unit 4	Smar	rt Substation							(8)
	•	Home & Buil	lding Automa	ition,					
	•	Smart Substa							
	•	Substation A	,						
	•	Feeder Auton	nation.						
Unit 5	•	Micro Grid:							(8)
	•	Concept of m							
	•	Formation of	•		rconnection				
	•	Protection &		•	1 11				
	•	Plastic & Org							
	•	Variable spee							
Unit 6	•	Captive power				agy sources.			
omt 0	•					rea Network (HAN)		
	•					Network (WA			
		•				mmunication.	u 1).		
							Security for Smart G	rid	
		D 11 1					Journey for Dillart Of	.10.	
Text B				,- = 0	F-270				
							L		<u> </u>

1.	JanakaEkanayake, Nick Jenkins, KithsiriLiyanage, —Smart Grid: Te	echnology a	nd Applications , Wiley 2012	2.								
2.	Ali Keyhani, —Design of smart power grid renewable energy system	ns , Wiley I	EEE,2011									
Ref	eference Books											
1.	Clark W. Gellings, —The Smart Grid: Enabling Energy Efficiency and Demand Responsell, CRC Press, 2009.											
2.	Stuart Borlase, —Smart Grid:Infrastructure, Technology and solutions	—CRC Pre	ess.									
3.	A.G.Phadke, —Synchronized Phasor Measurement and their Applica	ations , Spri	nger.									
Use	eful Links											
1.	https://nptel.ac.in/courses/108/107/108107113/											
2.	https://nptel.ac.in/courses/108/107/108107143/											

Government College of Engineering, Karad

Final Year (Sem. – VII) B. Tech. Electrical Engineering

EE 2742: Smart Grid

Mapping of COs and POs

Course Outcomes (CO)

Students will be able to

- 1. appreciate the difference between smart grid & conventional grid.
- 2. apply smart metering concepts to industrial and commercial installations.
- 3. formulate solutions in the areas of smart substations, distributed generation, and wide area measurements.
- 4. provide smart grid solutions using modern communication technologies.

PO →	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO	PO	PO	PSO
CO↓										10	11	12	
CO 1	2	2	1	1	1	2	2					2	3
CO 2	3	2	2	1	2	3	1					1	3
CO 3	3	2	3	2	3	1	2					2	3
CO 4	2	2	2	1	2	1							3

Knowledge Level	CT 1	CT 2	TA	ESE
Remember				
Understand				
Apply	5	5	3	20
Analyse	5	5	3	20
Evaluate	5	5	4	20
Create				
TOTAL	15	15	10	60

ELECTIVE IV

				nent College o						
		Fin	al Year (Se	m. – VII) B. T	ech. Elec	trical Engi	neering			
		Elective	IV - EE 271	3 : Generation	1 Plannin	g and Load	d Forecasting			
Teachi	ng Sche	me					Examination Sch	eme		
Lecture	S	03Hrs/week					CT – 1	15		
Tutorial	s	01Hr./week					CT – 2	15		
Total C	redits	04					TA	10		
							ESE	60		
							Duration of ESE	02 Hrs	30 Min	
		nes (CO)								
Student	s will be	e able to								
				balance the sup	oply and lo	ad demand a	at all the times.			
		e different meth								
				n system cost and	d reliability	y analysis.				
4. dete	ermine e	economic operat	ion of Power							
				Course (Contents				Hours	
Unit 1		Generation- Fossil fuels, Hydropower and Nuclear power generation systems. Load Curves, Load								
	duration curve. Characteristics of Steam units, Variation in steam unit characteristics, Characteristics									
	+	of hydroelectric unit.								
Unit 2		Optimum Generation allocation : Long range and short range Hydro generation scheduling. The								
	short term and long term Hydro-thermal scheduling of generation. Hydroelectric plant models,									
		Scheduling problems.								
Unit 3							lispatch problem, 7		(8	
	system dispatch with Network losses, Lambda iteration method, Gradient methods of economic									
		tch, Newtons me								
Unit 4							reen unit within a	a plant,	(7)	
				Generation, Dis			<u> </u>			
Unit 5							y-Energy forecasting		(6)	
		•			weather se	nsitive forec	easting - Total fore	ecasts -		
T T A : <		al and Monthly			1 0			2.1	/= >	
Unit 6							ions. Requirements	of the	(5)	
T4 D		ai ioad dispatch d	centre, Energy	y management &	conservat	ion.				
Text Bo			1.0	1 4 7 777 1	1D E W	11 1 7	1 337'1			
		· ·		ol : A.J. Wood a						
			connected Sy	stem -Kirchmay	ers, L.K.,J	onn Wiley a	nd Sons, New York	•	T	
Referen			10 1 2	CNT (1 T	T. '1'. ' /XX /	1 D	<u> </u>	134 37	1	
							Lectures) : by Davi	a M. Nev	voery	
				rol , Abhijit Cha	ıkrabnaratı	, PHI				
3. Po	wer Sys	tem Planning - I	K.L. Sullivan,	McGraw Hill.						

Government College of Engineering, Karad

Final Year (Sem. – VII) B. Tech. Electrical Engineering

Elective IV - EE 2713: Generation Planning and Load Forecasting

Mapping of COs and POs

Course Outcomes (CO)

Students will be able to

- 1. Determine the power or energy needed to balance the supply and load demand at all the times.
- **2.** Examine the different methods of load forecasting.
- 3. Illustrate the different ways of generation system cost and reliability analysis.
- **4.** Find need of load dispatch centres and deregulation of electric utilities

PO →	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO	PO	PO	PSO
CO↓										10	11	12	
CO 1	2	3	2	1	1	2	2					2	3
CO 2	1	2	3	1	1	3	1					1	3
CO 3	3	1	1	2	3	2	2					2	3
CO 4	2	2	2	1	2	1							3

Knowledge Level	CT 1	CT 2	TA	ESE
Remember				
Understand				
Apply	5	5	3	20
Analyse	5	5	4	20
Evaluate	5	5	3	20
Create				
TOTAL	15	15	10	60

			Covern	nont Collogo of	Enginooni	na Kon			
		Fin		ment College of em. –VII) B. Teo					
				743 : Power Sys					
		Elecu	ive IV- EE2	Tower Sys	stem Oper	rauon ai	ia Control		
Teachin	g Schor	no					Examination Sch	10mo	
Lectures		03Hrs/week					CT – 1	15	
Tutorials		01Hrs/week					CT - 2	15	
Total Cr		04					TA	10	
							ESE	60	
							Duration of ESE	02 Hrs	30 Min
Course	Outcon	nes (CO)					I		
Students	will be	able to							
1. Ider	tify sig	nificance of pov	wer system oj	peration and contr	rol.				
2. Eva	luate the	real power-free	quency intera	ection and design of	of power-fre	equency c	ontroller.		
					ontrol action	s to be im	plemented for main	taining th	e
		ile against vary							
		e economic ope		<u> </u>					
5. Ana	lyse the	SCADA systen	n and its appl			n and cont	trol of power system	ns	
		G	•	Course Co	ontents				Hours
Unit 1		System Stabil		. 1	4 1 114		, 1 .	1 .	(6)
							rotor dynamics and		
		on, equal area c ng transient stal		by step solution c	or swing cur	rve, mum	-machine stability, t	iactors	
Unit 2				Operation and Co	ontrol				(8)
Omt 2						atching ce	enters, requirements	of good	(0)
							er vs frequency and		
							oncepts of load disp		
							s, speed load charac		
		ation of two gen					•		
Unit 3		Power- Freque							(6)
							nic analysis of unco		
							k diagram represen		
		•	•	•		quency bi	as control, state va	riability	
TT '4 4				patch control with	ı LFC.				(6)
Unit 4		ive Power – Vo			os of ropotis	10 10 1110 11	control, Automatic	Voltago	(6)
							entation of AVR lo		
							on line, methods of		
							COM for voltage co		
Unit 5		mic Operation			- /				(6)
					output char	acteristics	s of thermal plant,		
	incren	nental cost curve	e, optimal op	eration of thermal	l units witho	out and wi	ith transmission loss		
						•	factors method, sta		
							of UC problem usin	g	
	_			t term and long ter	rm hydrothe	ermal prol	blems.		
Unit 6		outer Control			-			.•	(6)
							trol centers and for		
							n hardware config		
				ing states – state ti			and errors -weighte	eu ieasi	
	square	ostimation – va	arous operati	ing states – state ti	amonion (II)	agraiii.			
Text Bo	oks								
10.10		1.77	G 4	.1 4	1 . 35		1		
1. Oll	e.L.Eloe	rd. Electric Ene	rgy Systems i	theory – An introd	duction Mc	Graw Hil	l Education Pvt. Ltd	l New De	elhi.

2.	Allen. J. Wood and Bruce F. Wollen berg, Power Generation, Oper	ation and C	ontrol, John Wiley and Sons	, Inc.,				
	2016.							
3.								
	Delhi, Third Edition, 2010.							
Ref	erence Books							
1.	Kothari D.P. and Nagrath I.J., Power System Engineering, Tata Mc	Graw-Hill I	Education, Second Edition, 2	.800				
2.	HadiSaadat, Power System Analysis, McGraw Hill Education Pvt.	Ltd., New D	Delhi, 21st reprint, 2010.					
3.	Kundur P., Power System Stability and Control, McGraw Hill Educ	cation Pvt. L	td., New Delhi, 10th reprint	, 2010.				
Use	ful Links							
1.	https://nptel.ac.in/courses/108/101/108101040/							
2.	https://nptel.ac.in/courses/108/104/108104052/							

Government College of Engineering, Karad

Final Year (Sem. – VII) B. Tech. Electrical Engineering

Elective IV- EE2743: Power System Operation and Control

Mapping of COs and POs

Course Outcomes (CO)

Students will be able to

- 1. Identify significance of power system operation and control.
- 2. Evaluate the real power-frequency interaction and design of power-frequency controller.
- 3. Analyse the reactive power-voltage interaction and the control actions to be implemented for maintaining the voltage profile against varying system load.
- **4.** Elaborate the economic operation of power system.
- **5.** Analyse the SCADA system and its application for real time operation and control of power systems

PO →	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO
CO↓													
CO 1	2	3	2	2	2	2	1					2	3
CO 2	3	2	3	2	2	3	1					2	3
CO 3	3	2	2	2	3	2	1					2	3
CO 4	2	2	2	2	2	1	1					2	3
CO 5	2	2	2	2	2	1	2					2	2

Knowledge Level	CT 1	CT 2	TA	ESE
Remember				
Understand				
Apply	5	5	3	20
Analyse	5	5	3	20
Evaluate	5	5	4	20
Create				
TOTAL	15	15	10	60

		Callana (CE)						
		College of Engineer	e,					
	·	VII) B. Tech. Electr						
	EE2/04:	Switchgear and Prot	tection					
Tooching	Cohomo	Eveni	nation Scheme					
Teaching S Lectures	03Hrs/week	CT – 1	15					
Tutorials	00Hrs/week	CT-1	15					
Total Credi		TA	10					
Total Cieu	its 05	ESE	60					
			on of ESE 02 Hrs 30 Min					
Course Or	itcomes (CO)	Durano	02 H 30 WH					
	vill be able to							
	stand the relaying principles, working of cir	rcuit breakers and L.T.	switchgears.					
	the different components of protection syst							
	fy, formulate and solve problems in protection			tors etc.				
	stand various protections utilised in power							
		Course Contents		Hours				
Unit 1	Fundamentals of power system protect	ion, Instrument Trans	sformers, Circuit Breakers: Need	(8)				
	of protection, protection principles, prote	-		, ,				
	protection, desirable attributes of protecti	on. Introduction to C.T	., C.T. equivalent circuit, C.T.					
	saturation and dc offset current, V.T. equ							
	voltage, arc interruption, resistance switc							
	circuit breaker ratings, classification of C.B.s - air break, air blast, vacuum, minimum oil and bulk							
	oil, SF6 C.B. L.T. switchgear: - MCB, MCCB, HRC fuses, type construction and application.							
Unit 2								
	Review of calculation of fault currents, C. B. selection, fuse protection, over current protection, PSM and TMS setting, phase relay coordination, earth fault protection using over current relays,							
	introduction to directional over-current re		totection using over current relays,					
Unit 3	Basics of numerical relaying:	lays.		(6)				
Omt 5	Numerical relaying fundamentals, sample	ling theorem anti-alias	sing filters least square method for	(0)				
	estimation of phasors, Fourier algorit							
	estimation of phasors from discrete For							
	numerical relays. Fundamentals of PMU		1					
Unit 4	Transmission System Protection using			(7)				
	Introduction to distance relaying, zones	s of protection, effect	of fault arc resistance, directional					
	properties, setting and coordination of							
	realization of distance relays using numer	rical relaying algorithm	s, Basics of load encroachment and					
	power swing.			(E)				
Unit 5	Protection of Transformer, Generator,			(7)				
	Percentage differential protection, magnification relay with harmonic restraint, restricted							
	protection against over fluxing. Genera		•					
	protection against over maxing. General							
	protection of large motors.	obs of excitation, loss o	or prime mover and over speeding,					
Unit 6	Bus bar protection, Lightning Protection	on and system groundi	ing:	(6)				
	Bus bar protection: Different bus bar			. ,				
	impedance differential relay. Lightening							
	arresters, insulation coordination. Sys	tem grounding, need,	methods of system grounding,					
				Ì				
	substation ground mats.							
Γext Book	is .			2010				
I. Funda		·		on, 2010."				

1.	Switchgear protection and power system by Sunil S. Rao, Khanna Publishers, 13th edition, 2008.						
2.	Computer relaying for power systems by A.G.Phadke, J.S.Thorp-research studies press ltd. England John Wiley & sons						
	Inc. New York.						
3.	Protection of power systems by Blackburn.						
Us	eful Links						
1.	http://www.cdeep.iitb.ac.in/webpage_data/nptel/Electrical	%20Eı	ngineering/Power%20System%	20Protection/TOC_M1.ht			
2.	https://nptel.ac.in/courses/108/107/108107167/						
3.	www.ocw.mit.edu						

Government College of Engineering, Karad

Final Year (Sem. - VII) B. Tech. Electrical Engineering

EE2704: Switchgear and Protection

Mapping of COs and POs

Course Outcomes (CO)

Students will be able to

- 1. Understand the relaying principles, working of circuit breakers and L.T. switchgears.
- 2. Select the different components of protection system such as CT, PT, circuit breakers, relays etc.
- 3. Identify, formulate and solve problems in protection of transformer, generator, transmission lines, bus bar, motors etc.
- **4.** Understand various protections utilised in power system to maintain stability of the same.

PO →	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO
CO↓													
CO 1	2	2	2	1	1	2	2					2	3
CO 2	3	2	3	1	2	3	1					2	3
CO 3	3	2	2	2	3	2	1					2	3
CO 4	2	2	2	1	2	1							3

Knowledge Level	CT 1	CT 2	TA	ESE
Remember				
Understand				
Apply	5	5	3	20
Analyse	5	5	3	20
Evaluate	5	5	4	20
Create				
TOTAL	15	15	10	60

		Gove	rnment College of Engin	eering, Kara	nd		
		Final Year	(Sem. – VII) B. Tech. Ele	ectrical Engi	neering		
		1	EE 2705: Electrical D				
			EE 2703. Electrical E	3117C 3			T
Teac	thing Sch	omo			Examination Scher	no.	
Lecti		04Hrs/week			CT – 1	15	
Tuto		00Hrs/week			$\frac{CT-1}{CT-2}$	15	
	Credits	04			TA	10	
Tota	Cleuits	04			ESE		
						60)]\ (C)
	0 1	(00)			Duration of ESE	02 Hrs 30) Min
		mes (CO)					
	ents will l						
1.		athematical skill with Power E	Electronics to demonstrate	drive charact	teristics and applicat	ions of variou	IS
		ers in electrical drive systems.					
2.		dynamics of electrical drives,					
3.	•	and evaluate advanced control					
4.	Recomn	nend and Design suitable control	ol schemes for required dr	rive application	on.		
			Course Content	ts			Hour
							S
Unit	1 Intro	duction: Drive concepts, ene	ergy conversion, energy s	saving and p	av-off using Power	Electronics	(4)
C 1110		erter; advantages, parts, choice					(-)
		ly-state, acceleration, deceleration					
		rical drive.	ation), open 100p, closed	roop, torque	, speed, and earrent	control of	
Unit		mics of Electrical Drive: F	undamental torque equat	tion nature	and classification o	f various	(6)
Cint		es; control & stability of electr					(0)
		es of motor duty, IP protection					
		r for various applications,	ii (iiigiess protection), car	iculations for	rating, criteria for s	sciection of	
Unit		Motor Drives: Review of bas	ic characteristics classics	al control sol	nemes (starting hral	zing speed	(6)
Cint		e), Performance of dc motor					(0)
		ture voltage control, modes of			sis, speed condoi,	inculous of	
		nced Control Schemes: Sir			d rectifier-fed de d	lrives dual	
		erter control, chopper-control					
		cations of DC drives	ned de dirves, periornia	ance analysis	s, Diusiliess DC II	iotor urive,	
Unit		ction Motor Drives: Review	of bosic observatoristics of	lessical contr	val cahamac (starting	brokina	(8)
Omt			of basic characteristics, c.	iassicai coitti	of schemes (starting	, oraking,	(0)
	_	l, torque), a r Control Schemes: Stator vo	oltaga control W/f control				
					Caharbina drive and	Statio	
		crotorresistancecontrolmethod,			Scherblus urive and	Static	
		ner drive, Limitation of scalar cor Control Schemes: Voltage			eary for motor cont	mal Dimaat	
					egy for motor cont	ioi, Direct	
T I m 24		ue Control (DTC), Field Orient hronous Motor Drives: Revie			vnohronova		(0)
Unit			O 1	_	•	onouemet	(8)
		r,Staticvariablefrequencycontrove, Introductiontoclosedloopco					
						Ξ,	
T I *4		anent Magnet Synchronous Mo					(4)
Unit		rent components of standard ir	idustrial drives, practical i	issues of inte	rconnections betwee	n motors	(4)
		nverters	T(1. MC11 Oc. 1.D. 12)	- M:11 C		Cl	
		es for Specific Applications:		ig Mill, Ceme	ent Mill, Sugar Mill,	Chemical /	
T		chemical industry, Electrical V	enicles, machine tools				
	books	. 1 (77)	1 11 5 11111				<u> </u>
1.		entalsofElectricalDrives,G.K.D					
2.		urseinElectricalDrives,S.K.Pilla					
3.		es and Control of Electrical Dri	ives, PiotrWach, Springer	Publication			
Refe	rence Bo	oks					

1.	Modern Power Electronics and AC Drives, B. K. Bose, PrenticeHall(I)Pvt.Ltd							
2.	ElectricalMotorDrives:Modelling,AnalysisandControl,R.Krishnan, PrenticeHall(I)Pvt.Ltd							
3.	• Analysis of Electric Machine, P. C. Krause, Wiley-IEEE press 3 rd edition.							
Usef	Useful Links							
1.	http://nptel.ac.in/courses/108102046/							
2.	http://nptel.ac.in/courses/108108077/							
3.	http://nptel.ac.in/courses/108104011/							

Government College of Engineering, Karad Final Year (Sem. – VII) B. Tech. Electrical Engineering EE 2705: Electrical Drives

Mapping of COs and POs

Course Outcomes (CO)

Students will be able to

- 1. Apply mathematical skill with Power Electronics to demonstrate drive characteristics and applications of various controllers in electrical drive systems.
- **2.** Analyse dynamics of electrical drives, and its stability.
- **3.** Analyse and evaluate advanced control schemes for torque-speed control of electrical drives.
- **4.** Recommend and Design suitable control schemes for required drive application.

PO →	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO
CO↓													
CO 1	3	3	2	3	2	2	2	2				3	3
CO 2	3	3	3	3	3	1	3	2				3	2
CO 3	3	2	2	3	1	2	2	1				3	2
CO 4	3	2	1	2	2	3	1					3	

Knowledge Level	CT 1	CT 2	TA	ESE
Remember	-	-	-	-
Understand	-	-	-	-
Apply	5	5	3	20
Analyse	5	5	3	20
Evaluate	5	5	4	20
Create	-	-	-	-
TOTAL	15	15	10	60

	Government College of Engineering, Kara						
	Final Year (Sem. – VII) B. Tech. Electrical Engi						
	EE2706: Computer Network & Communication	n Lab					
Teaching Schen	ne	Examination Sch	neme				
Lectures		CT – 1					
Tutorials		CT – 2					
Practicals	02 Hrs/week	CA	50				
Total Credits	01	ESE					
		Duration of ESE					
Course Outcom							
Student will be a	able to						
	t principles of computer networking						
	erformance of various computer network						
	a Networks for LAN						
4. Analyze r	networking protocols using Modern tools						
·	Experiments						
Experiment 1	Study of Networking components (Hardware/software) i.e. cables, connectors, topologies,						
	switches/ hubs, crimping tool, IP addressing scheme, Subnetting	, College Network De	sign				
Experiment 2	Construction of CAT 6/ CAT 7 Ethernet cable (straight/ crossover).						
	Layer 2 & 3 Switch Data Networking, PC Network, TCP/IP con-	iguration					
Experiment 3	Execution of Windows Networking Commands such s Ping, Netstat ARP, Netstat,						
	Hostname, Tracert, Ipconfig, NSLookup, Route, PathPing, NetDiag, Telnet, FTP, Netsh						
	Execution of Linux Networking Commands such as ifconfig, ip, trace route, tracepath, ping,						
	netstat, ss, dig, nslookup, route, host, arp, iwconfig, hostnam	e, curl or wget, mtr,	whois,				
	ifplugstatus, iftop, tcpdump						
Experiment 4	Implementation of Error Detection / Error Correction Technique	3					
	a] bit stuffing b] Character stuffing. c] CRC Code.						
Experiment 5	Implementation of Stop and Wait Protocol and sliding window.						
Experiment 6	Implementation of Go back-N and selective repeat protocols.						
Experiment 7	Implementation of simple client server architecture						
Experiment 8	Configuration of Network topology using Packet Tracer.						
Experiment 9	Utilization of Wireshark network analyser, Network Simulation						
Experiment 10	Study of MANET and configure static routing protocol in	MANET environment	t using				
	NS2/OMNET/QualNet.						

Government College of Engineering, Karad	
Final Year (Sem – VII) B. Tech. Electrical Engineering	
EE2706: Computer Network & Communication Lab	

Mapping of COs and POs

Cours	Course Outcomes (CO)									
Studen	Student will be able to									
1.	Implement principles of computer networking									
2.	Analyze performance of various computer network									
3.	Build Data Networks for LAN									
4.	Analyze networking protocols using Modern tools									

PO →	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO
CO↓													
CO 1	2	2	3	1	2	-	-	-	-	-	-	-	-
CO 2	2	2	3	1	1	-	-	-	-	-	-	-	1
CO 3	2	1	3	1	2	2	1	-	1	1	-	2	2
CO 4	2	1	3	1	2	2	-	-	-	-	-	-	3

- Assessment for laboratory work will be based on skills acquired by students during the course.
 Continuous Assessment Sheet (CAS) will be maintained for each student.

Knowledge Level	CT 1	CT 2	CA	ESE
Remember				
Understand				
Apply			10	10
Analyse			10	10
Evaluate			5	5
Create				
TOTAL			25	25

			e of Engineering, Kara		
	Fin	al Year (Sem. – VII) E	3. Tech. Electrical Engi	ineering	
		EE 2717 : Restruct	ured Power System La	ıb	
				1	
Teaching S	Scheme			Examination Sch	eme
Lectures				CT – 1	
Tutorials				CT – 2	
Practical	02Hrs/week			TA/CA	25
Total Credi	ts 01			ESE	25
				Duration of ESE	3 Hrs
Course Ou	itcomes (CO)				
Students wi	ill be able to				
1. Identif	y the need of online	platform for energy bus	iness.		
2. Illustra	ite Day Ahead Marke	t and Term Ahead Marke	t online		
3. Demon	nstrate grid managem	ent of regional load dispa	tch centre		
4. Demon	strate Business rules	and bye laws for online e	nergy business		
		Ex	periments		
1 A	analyse Energy Excha	ange India working online	;		
2 II	llustrate Day Ahead I	Market (DAM) online			
3 II	llustrate Term Ahead	Market (TAM) online			
4 D	Demonstrate Business	rules and bye laws in _Er	nergy Exchange India' onl	ine business	
5 D	Demonstrate grid man	agement from wrldc, Mu	mbai		
6 II	llustrate load dispatch	n management at LDC, Ka	alwa		

Government College of Engineering, Karad Final Year (Sem. – VII) B. Tech. Electrical Engineering EE 2717: Restructured Power System Lab

Mapping of COs and POs

110	ւրբւ	ing of Cos and 1 Os								
Ī	Co	urse Outcomes (CO)								
Ī	Students will be able to									
Ī	1.	Identify the need of online platform for energy business.								
Ī	2.	Illustrate Day Ahead Market and Term Ahead Market online								
Ī	3.	Demonstrate grid management of regional load dispatch centre								
Ī	4.	Demonstrate Business rules and bye laws for online energy business								

PO →	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO
CO↓													
CO 1	2	2	2	1	1	2	2					2	3
CO 2	3	2	3	1	2	3	1					2	3
CO 3	3	2	2	2	3	2	1					2	3
CO 4	2	2	2	1	2	1							3

Knowledge Level	CT 1	CT 2	TA	ESE
Remember				
Understand				
Apply			10	10
Analyse			10	10
Evaluate			5	5
Create				
TOTAL			25	25

Government College of Engineering, Karad

Final Year (Sem. - VII) B. Tech. Electrical Engineering

EE 2727 : Special Electrical Machines Lab

Laborator	y Scheme	Examinatio	n Scheme
Practical	2 Hrs./week	CA	25
Total Credits	1	ESE	25*
		Total	50
Course Outcome	~ (CO)	<u> </u>	

Course Outcomes (CO)

Students will be able to

- 1 Select proper electrical motor with control technique for required applications.
- 2 Analyze the advanced control techniques applicable for AC and DC motors in practice.
- 3 Design, develop and simulate advanced control schemes for electrical motors.

	Course Contents
Experiment1	Simulation study of speed control of BLDC motor.
Experiment 2	Simulation study of speed control of PMS motor.
Experiment 3	Simulation study of speed control of SR motor.
Experiment 4	Simulation study of speed control of Stepper motor.
Experiment 5	Simulation study of speed control of Synchronous reluctance motor.
Experiment 6	Study of performance characteristics of BLDC motor.
Experiment 7	Study of performance characteristics of PMS motor.
Experiment 8	Study of performance characteristics of SR motor.
Experiment 9	Study of performance characteristics of Stepper motor.
Experiment 10	Study of performance characteristics of Synchronous reluctance motor.
Submission:	
ESE	Minimum 8 experiments to be performed / simulated and evaluated in journal.

Government College of Engineering, Karad Final Year (Sem. – VII) B. Tech. Electrical Engineering EE 2727: Special Electrical Machines Lab.

Mapping of COs and POs

lapp	ong of COs and POs									
Co	Course Outcomes (CO)									
Stı	Students will be able to									
1.	Select proper electrical motor with control technique for required applications.									
2.	Analyze the advanced control techniques applicable for AC and DC									
	motors in practice.									
3.	Design, develop and simulate advanced control schemes for electrical									
	motors.									

PO →	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO
CO↓													
CO 1	2	2	2	1	1	2	2					2	3
CO 2	3	2	3	1	2	3	1					2	3
CO 3	3	2	2	2	3	2	1					2	3

Knowledge Level	CT 1	CT 2	TA	ESE
Remember				
Understand				
Apply			10	10
Analyse			10	10
Evaluate			5	5
Create				
TOTAL			25	25

	G	overnment Colleg	e of Engineering, Kar	ad			
			. Tech. Electrical Eng				
	EE2	737: Industrial Au	itomation and Contro	ol Lab			
Teaching Sch	neme			Examination Sch	eme		
Lectures				CT – 1			
Tutorials				CT – 2			
Practicals Texts 1 Constitution	02Hrs/week			CA ESE	25 25		
Total Credits	01			Duration of ESE	25		
Course Outco	omos (CO)			Duration of ESE			
Student will b							
		r the given application	on using different instruct	rion			
	logic base to control th	0 11	on using different instruction				
	and test ladder progra		cations.				
	nimic diagram in SCA						
		•	Experiments				
Experiment 1	Use PLC to test ST	ART-STOP logic for	r two inputs and one outp	out system			
Experiment 2			he given application using	ng following- timer, c	ounter,		
		l, arithmetic instructi					
Experiment 3		ol the following de	vices: lamp, motor, pus	sh button switches,			
	proximity sensor						
Experiment 4			using RTD or Thermoco				
Experiment 5	-	<u> </u>	se counting using limit s	<u> </u>	sor.		
Experiment 6	-	1 0	omated car parking syste	m			
Experiment 7	_	1 0	tomated elevator control				
Experiment 8	•	ndder program for tar					
Experiment 9	ont 9 Develop and test ladder program to control speed of stepper motor with suitable drivers						
Experiment 10	J	s front panel contro	ols of Variable Frequer	cy Drive (VFD) (sn	nart		
	drive)						
		of AC/DC motor us					
Experiment 1		mimic diagram for t					
Experiment 12	2 Simulate tank leve	control using availal	ble SCADA system				

Government College of Engineering, Karad

Final Year (Sem. -VII) B. Tech. Electrical Engineering

EE2737: Industrial Automation and Control Lab

Mapping of COs and POs

Course Outcomes (CO)

Students will be able to

- 1. Simulate the ladder diagram for the given application using different instruction.
- **2.** Design logic base to control the various devices.
- 3. Develop and test ladder program for the given applications.
- **4.** Create mimic diagram in SCADA system for the given application.

$PO \rightarrow$	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO
CO↓													
CO 1	2	2	2	1	1	2	2					2	3
CO 2	3	2	2	1	2	3							2
CO 3	3	1	1	2	3	2	1					2	3
CO 4	2	2	2	1	1	1							3

- 1. Assessment for laboratory work will be based on skills acquired by students during the course.
- 2. Continuous Assessment Sheet (CAS) will be maintained for each student.

Knowledge Level	CT 1	CT 2	CA	ESE
Remember				
Understand				
Apply			10	10
Analyse			5	5
Evaluate			5	5
Create			5	5
TOTAL			25	25

Government College of Engineering, Karad Final Year (Sem. – VII) B. Tech. Electrical Engineering EE 2747: Smart Grid Laboratory

Mapping of COs and POs

Course Outcomes (CO)

Students will be able to

- 1. appreciate the difference between smart grid & conventional grid.
- **2.** apply smart metering concepts to industrial and commercial installations.
- **3.** formulate solutions in the areas of smart substations, distributed generation, and wide area measurements.
- **4.** provide smart grid solutions using modern communication technologies.

PO →	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO
CO↓													
CO 1	2	2	1	1	1	2	2					2	3
CO 2	3	2	2	1	2	3	1					1	3
CO 3	3	2	3	2	3	1	2					2	3
CO 4	2	2	2	1	2	1							3

Knowledge Level	CT 1	CT 2	TA	ESE
Remember				
Understand				
Apply	5	5	3	20
Analyse	5	5	3	20
Evaluate	5	5	4	20
Create				
TOTAL	15	15	10	60

		overnment College of Engineering, Karad		
		ear (Sem. – VII) B. Tech. Electrical Engineerin		
	EE 2718 :	Generation Planning and Load Forecasting	Lab	
Teaching Schem	ne		mination Sch	eme
Lectures		CT		
Tutorials		CT	-2	
Practicals	02Hrs/week	CA		25
Total Credits	01	ESE		25
		Dur	ation of ESE	3 Hrs.
Course Outcom				
Student will be a				
		e distribution system based on forecasted data		
2. Inculcate the	he concepts of evalua	ation of generation, transmission and distribution syst	tem reliability	and their
	system planning.			
		e and evaluate an electric power system for generation	on planning and	d load
forecasting	•			
T 1	7D + 1 XX 1	Experiments		
Experiment 1		ver station characteristics		
Experiment 2		ower station characteristics		
Experiment 3		ats of Structure of Power System.		
Experiment 4	•	as of National and Regional Planning, for Power syst	em	
Experiment 5	Case study on fuel s	•		
Experiment 6	Economic load distr			
Experiment 7	To study Gradient n	nethod of Economic dispatch.		
Experiment 8	To list and examine	the Methods of short term, medium term and long to	erm load forec	asting
Experiment 9	To determine Trans	mission and distribution planning.		
Experiment 10	To analyse cost ana	llysis in generation system		
Experiment 11		Forecasting technique		
Experiment 12		istribution Data collection of state.		
nv eight experin	nents from above list.			•

Government College of Engineering, Karad Final Year (Sem. – VII) B. Tech. Electrical Engineering EE 2718 : Generation Planning and Load Forecasting Lab

Mapping of COs and POs

TIMPPI	is of cos and tos					
Cour	se Outcomes (CO)					
Stude	nt will be able to					
1.	To design, analyze and evaluate distribution system design based on forecasted data					
2.	Inculcate the concepts of evaluation of generation, transmission and distribution system reliability and their					
	impacts on system planning.					
3.	use the tools required to analyze and evaluate an electric power system for generation planning and load					
	forecasting					

PO →	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1
CO↓													
CO 1	2	2	2	1	1	2	2					2	3
CO 2	3	2	2	1	2	3							2
CO 3	3	1	1	2	3	2	1					1	3
CO 4	2	2	2	1	2	1							2

- 1. Assessment for laboratory work will be based on skills acquired by students during the course.
- 2. Continuous Assessment Sheet (CAS) will be maintained for each student.

Knowledge Level	CT 1	CT 2	CA	ESE
Remember				
Understand				
Apply			10	10
Analyse			10	10
Evaluate			5	5
Create				
TOTAL			25	25

	Gov	ernment College of Engineering, Karad						
		r (Sem. – VII) B. Tech. Electrical Engineering						
	EE 2848	: Power System Operation and Control Lab						
Teaching Sche								
Lectures	CT – 1							
Tutorials		CT – 2						
Practicals	02Hrs/week	CA		25				
Total Credits	01	ESE		50				
		Duration	n of ESE	3 hrs				
Course Outcom								
Student will be								
		e for given system using software tool.						
		ontrol using software tool.						
		nce and power factor improvement test						
4. Analyse	optimum loading in pov							
	Experiments							
Experiment 1								
		e same using any dedicated software						
Experiment 2		in speed, frequency and steady state error correspondi						
		e area and a two area power system, with and without s	upplement	ary				
Empariment 2	control using software							
Experiment 3		er system component (HIGH VOLTAGE TESTING) on resistance of the given LT &HT cable by using app		-ti				
Experiment 4	equipment	on resistance of the given L1 &H1 cable by using app	ropriate tes	sting				
Experiment 5		nce to earth of the given earthing system and design an	earthing sy	stem				
2p •	from soil resistivity of							
Experiment 6		pacitors for power factor correction for a load and verif	fy it					
Experiment 7		ons of the given Current Transformer and Potential Tran	nsformer.					
Experiment 8		ansfer capability of the transmission line with and with						
•	compensation	-						
	b) Effects of series cor	npensation on power transfer capability and system sta	bility					
Experiment 9	Optimum loading of g	enerators neglecting transmission losses	-					
Experiment 10	Optimum loading of g	enerators with penalty factors						
Note: Use diffe	rent software tool to p	erform some of the experiment.						

Government College of Engineering, Karad
Final Year (Sem. – VII) B. Tech. Electrical Engineering
EE 2848 : Power System Operation and Control Lab

Mapping of COs and POs

Wiapping of Cos and Los					
Course Outcomes (CO)					
Student will be able to					
1.	Determine critical clearing angle for given system using software tool.				
2.	Perform automatic generation control using software tool.				
3.	Perform insulation, earth resistance and power factor improvement test				
4.	Analyse optimum loading in power system.				

PO →	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO
CO↓													
CO 1	2	2	2	1	2	3	2					2	3
CO 2	1	2	2	1	2	3	1					2	2
CO 3	1	1	1	2	3	3	1					2	3
CO 4	2	2	2	1	2	3	1					2	3

- Assessment for laboratory work will be based on skills acquired by students during the course.
 Continuous Assessment Sheet (CAS) will be maintained for each student.

Knowledge Level	CT 1	CT 2	CA	ESE
Remember				
Understand				
Apply			10	10
Analyse			10	10
Evaluate			5	5
Create				
TOTAL			25	25

		vernment College of Engineering,		
	Final Y	ear (Sem. – VII) B. Tech. Electrical	Engineering	
		EE2709: Switchgear and Protection	Lab	
Teaching Schen	ne		Examination Sch	ieme
Lectures			CT – 1	
Tutorials			CT – 2	
Practicals	02 Hrs/week		CA	25
Total Credits	01		ESE	25
			Duration of ESE	3 hrs
Course Outcom				
Student will be a				
		uipments e. g. fuse, MCB, relays etc. and	analyze the test results.	
	d operation & worki		IAD/ATD	
3. Perform si	mulation and modeli	ng of protection system using ETAP/PSC	CAD/ATP.	
E	C-14-4:111	Experiments		
Experiment 1		ne diagram drawing using ATP.		
Experiment 2		ordination using ETAP.	- C C	
Experiment 3		ses and plot inverse time characteristic		
Experiment 4		operation of various MCBs, ELCBs at		
E		ICBs. Study of MCB protection co-ord		
Experiment 5		on and working of Induction Disc Rela	ays.	
Experiment 6	IDMT relay charac			
Experiment 7		acteristics of over voltage Relay.		
Experiment 8		acteristics of under voltage Relay.		
Experiment 9		acteristics of over current Relay.		
Experiment 10	Operation of Buch			
Experiment 11		king of feeder protection.		
Experiment 12		king of Differential protection of Altern		
Experiment 13	Operation and wor	king of Differential protection of Trans	former	

Government College of Engineering, Karad Final Year (Sem. – VII) B. Tech. Electrical Engineering EE2709: Switchgear and Protection Lab

Mapping of COs and POs

Lu	hhi	
	Cor	urse Outcomes (CO)
	Stu	dent will be able to
Ī	1.	Demonstrate tests on various equipments e. g. fuse, MCB, relays etc. and analyze the test results.
Ī	2.	Understand operation & working principle of relay.
Ī	3.	Perform simulation and modeling of protection system using ETAP/PSCAD/ATP.

PO →	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO
CO↓													
CO 1		2	2	1	1	2	2					2	3
CO 2		2	2	1	2	3							2
CO 3		1	1	2	3	2	1					2	3

- Assessment for laboratory work will be based on skills acquired by students during the course.
 Continuous Assessment Sheet (CAS) will be maintained for each student.

Knowledge Level	CT 1	CT 2	CA	ESE
Remember				
Understand				
Apply			10	10
Analyse			10	10
Evaluate			5	5
Create				
TOTAL			25	25

	Fine	Government College o Vear (Sem. – VII) B. T		ering					
	Tille	EE 2710 : Electrical		cring					
			211,00 2400140015						
Teaching Sche	eme	L		Examination Sch	ieme				
Lectures				CT – 1	_				
Tutorials				CT – 2 -					
Practical	02 Hrs/week			CA 25					
Total Credits	01			ESE 25					
				Duration of ESE	3 hrs				
Course Outco	mes (CO)								
Student will be	able to								
1. Select pro	per electrical drive	notor for required applica	tions.						
		technique applicable for A		ractice.					
3. Simulate,	Design and Develo	advanced control schem							
			periments						
Experiment 1		of inertia (MI) of laborat	•	erformance based)					
Experiment 2		d experiments for DC mor							
		OCmotorusing1-phconver							
		OCmotorusing3-phconver							
		DC motor using dual cor							
Experiment 3		experiments for DC motor							
		of DC motor (separately							
		converter fed DC motor I							
		verter-fed (1-ph, 3-ph) sep		rive					
Experiment 4		l experiments for 3-ph inc							
		cteristics using voltage co							
		cteristics using V/F contr		op)					
Experiment 5		experiments for 3-ph indu	ction motor						
		ph induction motor							
		ph induction motor							
Experiment 6		ulation based experiment		synchronous moto	r				
Experiment 7		ulation based experiment							
Experiment 8		s) based on applications(unit 6) of motor (design	, calculations,					
	simulations, indus	ry visits)							
	 xperiment list is for lications in electric 	guidelines, concern facu ll drives.	lty can add / change th	ne experiments bas	ed on advance				
ESE exam shal	l be based on the e	xperiments performed / s	imulated during labora	tory hrs to check th	he ability of th				
students to ana	lyse and evaluate th	drive performance.	-						

Government College of Engineering, Karad							
Final Year (Sem. – VII) B. Tech. Electrical Engineering							
EE 2710 : Electrical Drives Laboratory							

Mapping of COs and POs

 ~PP8	01 000 4114 1 00							
Course Outcomes (CO)								
Student will be able to								
1.	Select proper electrical drive motor for required applications.							
2.	Analyse the advanced control technique applicable for A C and DC motors in practice.							
3.	Simulate, Design and Develop advanced control schemes for electrical drives.							

PO →	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO
CO↓													
CO 1	3	3	2	3	2	2	2	2				3	3
CO 2	3	3	3	3	3	1	3	2				3	2
CO 3	3	2	2	3	1	2	2	1				3	2

- Assessment for laboratory work will be based on skills acquired by students during the course.
 Continuous Assessment Sheet (CAS) will be maintained for each student.

Knowledge Level	CT 1	CT 2	CA	ESE
Remember	-	-	-	-
Understand	-	-	-	-
Apply	-	-	10	10
Analyse	-	-	10	10
Evaluate	-	-	5	5
Create	-	-	-	-
TOTAL	-	-	25	25

Government College of Engineering, Karad										
		Final Year (Sem. –	VII) B. Tech. Electrical Engi	ineering						
EE 2711:Case Study										
Teachin	g Schen	e		Examination Sch	eme					
Lectures		00		CT – 1						
Practical		02Hrs/week		CT – 2						
Total Cr	edits	01		TA	50					
				ESE						
	Duration of ESE 01 Hr									
Course		es (CO)								
Students										
			in the relevant subjects of Electric	cal engineering.						
		echnical area beyond curriculum.								
	-	work in the literature to define sc	1 1 1							
4. App	ly know	edge for detailed analysis and dis								
			Course Contents			Hours				
			ents on general topic related to l	Electrical engineer	ring.					
		lected topic can be any of the	•							
		•	fter referring to a peer reviewed							
	2.	Presentation of any of the Int	ernational standard and its IS e	quivalent						
	3.	Presentation based on any	magazine article and its ref	ferences published	d by					
		professional societies (e.g.	IEEE Power engineering soc	ciety, Power elec	tronics					
		society, Industrial electronic	society,ISO9001-2015 etc							

Government College of Engineering, Karad

Final Year (Sem. – VII) B. Tech. Electrical Engineering

EE 2711:Case study

Mapping of COs and POs

Course Outcomes (CO)

Students will

- 1. Demonstrate knowledge of the state of the art in the relevant subjects of Electrical engineering.
- 2. Investigate technical area beyond curriculum.
- **3.** Analyse the work in the literature to define scope of proposed.
- **4.** Apply knowledge for detailed analysis and disseminate it.

PO →	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO
CO↓													
CO 1	3		1	1	2	2	1		3	2		3	
CO 2	3	2	1		2	3	1	1	3	3		3	
CO 3	1				3			2	3	3	1	3	
CO 4	3	2	2	1	1	2	2	2	3	2		3	1

Knowledge Level	CT 1	CT 2	TA	ESE
Remember				
Understand			10	
Apply			10	
Analyse			20	
Evaluate			10	
Create				
TOTAL			25	

			Government College of Engineering, Kar	ad					
			B. Tech. (Sem. – VII) Electrical Engineer	ing					
		EF	E 2712:Industrial Training & Technical Pres	entation					
				_					
Teach	ning Sche	me		Examination Sch	eme				
Lectur	res	00		CT – 1					
Tutoria	ials	01Hr./week		CT – 2					
Total (Credits	01		TA	50				
				ESE					
				Duration of ESE	01 Hr.				
Cours	se Outcor	nes (CO)							
Studer	nts will be	e able to							
1. de	emonstrat	e knowledge of	processes and functionality of industry wherein the	training is sought					
2. A	nalyse re	cent trends and t	echnologies used in industry.						
3. In	nprove co	mmunication sk	ills.						
4. A	nalyse re	lation between tl	neory and practice.						
			Course Contents		Hou	rs			
	Stude	ents will underg	go four weeks industrial training in industry (pre	ferably related to E	lectrical				
	Engineering) of their interest during summer vacation. They will prepare report on it and make								
	prese	ntation before th	neir classmates and teachers in first semester of fina	year of B. Tech. Als	so, they				
			ensive report on training in softcopy/ hard copy.	•					

Government College of Engineering, Karad

B. Tech. (Sem. – VII) Electrical Engineering

EE 2712:Industrial Training & Technical Presentation

Mapping of COs and POs

Course Outcomes (CO)

Students will be able to

- 1. demonstrate knowledge of processes and functionality of industry wherein the training is sought
- 2. Analise recent trends and technologies used in industry.
- **3.** Improve communication skills.
- **4.** Analyse relation between theory and practice.

$PO \rightarrow$	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO
CO↓													
CO 1	3		1	1	2	2	1		3	2		3	
CO 2	3	2	1		2	3	1	1	3	3	2	3	
CO 3	1							2	3	3	1	3	
CO 4	3	2	2	1	1	2	2	2	3	2		3	

Knowledge Level	CT 1	CT 2	TA	ESE
Remember				
Understand			10	
Apply			10	
Analyse			20	
Evaluate			10	
Create				
TOTAL			50	

SEMESTER VIII

					nent College o						
			Fina		m. – VIII) B. 7			ineering			
					EE2801: Laws	for Enginee	ers				1 1
				T							
		g Schei							ion Scheme		
	ctures		03Hrs/week					CT – 1	15		
	torials tal Cre		00Hrs/week 03					CT – 2 TA	15		
100	iai Cit	ans	0.3					ESE	60		
								Duration o		2 Hrs 30) Min
Co	urse (Outcon	nes (CO)					2 www.our o	1252 02	- 1115 0 0	, 1,111
			able to								
1.	Fami	iliarise	with basic laws	that would h	elp in their profe	ession.					
2.				_	augmenting univ						
3.			e scope and cha nt models	racteristics of	of people-friendl	ly and eco-fi	riendly pro	oduction sys	stems, techr	nologies	s and
4.			rights of Election	ons and IPR,	Copyright.						
						Contents				I	Hours
Un	nit 1				onal Law Prea						(6)
			0 1		stice, Life and		•				
			oms; Directive prequirements and		State policy; Fur	ndamental D	uties; Eme	rgency prov	1sions – kir	nds,	
Hr	nit 2		•		s ates Act, 1947;	· Collective	hargainin	a. Industria	1 Employn	nent	(8)
O1	111 2				kmen's Compen			g, maasma	ii Linpioyii	liciit	(0)
					corporation; I			anies, publ	ic and pri	vate	
					ovisions; Law a						
				99, collabora	ation agreements	s for technological	ogy transfe	r; Corporate	liability, c	ivil	
T T	• • •		riminal.	6 C 4 4	1 7 11 0	1 4 4 4 4	10 5 2 C	1	1 6		(0)
Un	nit 3				under Indian C t Act and inclu						(6)
					settlement, Stan	_		U 1	. • .		
					n against possib						
					between two sta						
Un	nit 4	IPR	& Copyright	s: Introduc	tion-meaning	of intellect	tual prope	erty, main	forms of	IP,	(8)
					s and Designs						
		Berne	e convention,	Rome co	onvention, TF	RIPS, Pari	s conver	ntion and	internation	onal	
			izations relatin								
					India:- Meanir		-	-			
					nematographic			-	-		
	• •		•		nent, Piracy in						
Un	nit 5		-		lian Constituti	•	,	-			(6)
					tion Act, 1988						
					on Commissio				•		
		rights		es of States	s to be on the	e basis of a	auit suffr	age. Candı	date electo	orai	
Un	nit 6			d Public Ir	nternational L	Law covering	ng Human	Rights in	Internatio	nal	(6)
					ıman rights and						•
					Indian traditio				-		

	Political Rights 1966 including Optional Protocol – I (Individual Complaint Mechanism) &									
	Optional Protocol – II (Abolition of Death Penalty); Covenant on Economic, Social and									
	Cultural Rights 1966 including Optional Protocol – I (2002); UN Mechanism and									
	specialized agencies, (UNICEF, UNESCO, WHO, ILO, FAO, etc.)									
Tex	t Books									
1.	P.M. Bakshi (2003), Constitution of India, Universal Law Publishing Co.									
2.	S.K. Awasthi& R.P. Kataria(2006), Law relating to Protection of Human Rights, Orient Publishing									
3.										
4.	T. Ramappa (2010), Intellectual Property Rights Law in India, Asia Law House									
5.	Bare text (2005), Right to Information Act									
6	O.P. Malhotra, Law of Industrial Disputes, N.M. Tripathi Publishers									
Ref	erence Books									
1.	Cornish W. R. (2008), Intellectual Property Rights, Patents, Trademarks, Copyrights & Allied Rights,									
	Sweet & Maxwell									
2.	H.M. Seervai (1993), Constitutional Law of India, Tripathi Publications									
3.	Sethna, Indian Company Law									
4.	Agarwal H.O.(2008), International Law and Human Rights, Central Law Publications									
5.	Cornish W. R. (2008), Intellectual Property Rights, Patents, Trademarks, Copyrights & Allied Rights,									
	Sweet & Maxwell									
	ful Links									
1.	https://onlinecourses.nptel.ac.in/noc20_hs55/preview									
2.	http://www.mca.gov.in/MinistryV2/companiesact2013.html									
3.	https://legalaffairs.gov.in/									

Government College of Engineering, Karad

Final Year (Sem. – VIII) B. Tech. Electrical Engineering

EE2801: Laws for Engineers

Mapping of COs and POs

Course Outcomes (CO)

Students will be able to

- **1.** Familiarise with basic laws that would help in their profession.
- 2. Utilize the professional competence for augmenting universal human order.
- **3.** Identify the scope and characteristics of people-friendly and eco-friendly production systems, technologies and management models.
- 4. Identify the rights of Elections and IPR, Copyright.

$PO \rightarrow$	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO
CO↓													
CO 1	3	1	1	1	2	2	1					3	
CO 2	3	2	1	1	3	3	1					3	
CO 3	1	1	1									3	
CO 4	3	2	2	1	1	2	2					3	

Knowledge Level	CT 1	CT 2	TA	ESE
Remember				
Understand			5	5
Apply			5	5
Analyse			10	10
Evaluate			5	5
Create				
TOTAL			25	25

					ment College o					
			Fina	al Year (Se	m. – VIII) B. 7			ineering		
					EE2802: Emb	edded Syst	em			
Tea	ching	g Schei	me					Examination	n Scheme	
	tures	,	03Hrs/week					CT – 1	15	
Tuto	orials		00Hrs/week					CT – 2	15	
Tota	al Cre	edits	03					TA	10	
								ESE	60	
			(CO)					Duration of I	ESE 02 Hrs	30 Min
			e able to							
				ring ARM co	ontrollers to real-	life cituation	10			
					other data handlir					
					energy dissipation					
			est and debug co			,	<u>U 1</u>			
•					Course	Contents				Hours
Uni	it 1		Embedded Sys							(8)
					The RISC Design		phy, The	ARM Design	Philosophy,	
TT	:4.2				bedded System S	oftware.				(0)
Uni	It 2		Processor Fun		Registers (CPSI	D) Dinalina	avcantion	e Interrupte an	d the vector	(8)
					e revision, Arm F			s, interrupts an	d the vector	
Uni	it 3		ient C Program		z revision, z min r	1000350110	annics.			(4)
011					timization, Basic	C Data Ty	pes, C Loop	oing Structures	, Register	(-)
					r Aliasing, Struc					
					int, Inline Functi	ons and Inli	ne Assemb	ly, Portability	Issues.	
Uni	it 4		otion and Interiotion Handling. I		ng terrupt Handling	Schemes				(7)
Uni	it 5				d Synchronizat		esses. Thre	eads and Tasks		(6)
-		-			ion, Multiple Th		,			
					tween Functions					
			_		erprocess Comm		-	_		
					Box Functions, P				ssage Queue	
T I vo	:4 6				pe Functions, So	ocket Functi	ons, RPC F	unctions.		(7)
Uni	ու Ծ		world interfacii		ing, stepper mot	tor interfaci	ino dioital	-input output	interfacing	(7)
			amming on I2c &			ior interrue	ing, digital	input output	miterracing,	
		υ	C							
	t Boo									
1.	And 2004		oss, —ARM Sy	stem Develog	per's Guidel, Els	sevier Inc., l	Morgan Ka	ufmann publica	ation, Student	Edition,
2.			. —Embedded S	Systems- Arcl	hitecture, Progra	mming and	Design , Th	ne McGraw-Hi	ll companies, 2	2nd
		ion, 20		, , , , , , , , , , , , , , , , , , , ,	, 110810.		2 0018111, 11	10 1/10 01 0// 111		
3.				Designing Er	mbedded System	ıs", Newnes	s, 1999.			
		e Bool		•					•	
1.					uter System: Rea	l Time Inte	rfacing", B	rooks/Cole, 200	00	
2.	Prog	gramm	ing technique A	RM DUI 002	21A.					

3.	David Simon, "An Embedded Software Primer", Addison Wesley, 2	2000							
4.	K.J. Ayala, "The 8051 Microcontroller: Architecture, Programming	, and Appli	cations", Penram Intl, 1996.						
5.	By Frank Vahid, Tony Givargis, —Embedded System DesignI, Wiley Publication, 2nd Edition, 2002.								
Use	ful Links								
1.	http://nptel.ac.in/courses/108102045/								
3.	https://www.youtube.com/watch?v=y9RAhEfLfJs								

Government College of Engineering, Karad Final Year (Sem. – VIII) B. Tech. Electrical Engineering EE2802: Embedded System

Mapping of COs and POs

Course Outcomes (CO)

Students will be able to

- 1. Suggest design approach using ARM controllers to real-life situations.
- 2. Design interfacing of the systems with other data handling / processing systems.
- **3.** Appreciate engineering constraints like energy dissipation, data exchange speeds etc
- **4.** Understand and implement the instruction set for ARM processor.

PO →	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO
CO↓													
CO 1	2	2	2	1	1	2	2					2	3
CO 2	3	2	3	1	2	3	1					2	3
CO 3	3	2	2	2	3	2	1					2	3
CO 4	2	2	2	1	2	1							3

Knowledge Level	CT 1	CT 2	TA	ESE
Remember				
Understand				
Apply	5	5	3	20
Analyse	5	5	3	20
Evaluate	5	5	4	20
Create				
TOTAL	15	15	10	60

ELECTIVE V

				ernment C			<u> </u>						
		Fin	nal Year	(Sem. –V				gineering					
				Electiv	ve V- EE	2813:FA	CTS						
- 1.1			T										
	ng Schem							Examination Sci					
Lectures		03Hrs/week						CT – 1	15				
Tutorial		00Hrs/week						CT – 2	15				
Total C	redits	03						TA	10				
								ESE Druggian of ESE	60	20 Min			
Сомисс	Outcom	og (CO)						Duration of ESE	UZ HIS	30 Min			
	s will be												
		edge to learn I	EACTS or	onconto									
					nta.								
		er system com			ents.								
		pensation need											
4. Alla	Tyse con	pensation need	u iii powe		Course	Contents				Hours			
Unit 1	Intonoo	nnactions of T	`momomicoi				C Cristom I	Looding Conshility	Dorriga				
Unit 1								Loading Capability, nection, Relative Im-		(8)			
		rollable Param	•	onsideratio	ons or a r	Tansinissio	ii iiitercoiii	iection, Kelative IIII	portance				
Unit 2				a from E	ZACTO 4	taahnalaari	HVDC	vs. FACTS Statio	o Chunt	(6)			
Unit 2	Compe		, belletil	is ifolii F	ACIS (lecillology	, HVDC	vs. FACIS Statio	c Shunt	(6)			
Unit 3	Objectives of Shunt Compensation, Methods of Controllable Var Generation, Static Var								(6)				
	Compe	nsators: SVC a	and STAT	ГСОМ, Сол	mparison	Between S	TATCOM	OM and SVC, Static Var					
	System												
Unit 4		ves of Series ter Type Serie			riable In	npedance [Type Series	s Compensators, S	witching	(6)			
Unit 5					rs: Obioo	tives of Ve	Itaga and D	Phase Angle Regulat	orc	(8)			
Unit 5								s, Switching Conver		(0)			
		Voltage and Pl				nase Angie	Regulators	s, Switching Conver	ici-				
Unit 6						ine Power l	Flow Contro	oller (IPFC), Introdu	uction	(6)			
Cinto		ified Power Fl		` '					uction,	(0)			
Text Bo		inica i ower i	10 W COIII	Toner, The	memme	1 0 WC1 1 10	V Controlle						
		ng FACTS , N	J.G. Hingo	orani & Gv	ліgvi. IEI	EE Press. 1	999						
	ice Books			orum ee oj	<i>48</i> , 11, 121	32 11000, 1							
			in Electric	cal Systems	s E Act	na. V.G. Ac	relidis O A	Anaya-Lara, T. J.E. 1	Miller Nev	wnes			
		neering Series,			_ ,	,	,, 0.1						
2. Int	roduction	To Facts Con	trollers T	heory, Mod	deling, an	nd Applicat	ions,Kalyaı	n K. SenMey Ling S	Sen,IEEEP	ress,A			
		EY & SONS, I			Annina E	m a a t NTI !	A \$7 A 1-0-1-	المادية عامية	ation				
								emikerverlag publica	auon				
		transmission	systems (FACIS),	, Yong Hi	ua Song IE	E Press, 19	99 T		T			
Useful]		Lasta / cons	- /204 /400	. /20440662	24/								
1. <u>htt</u>	.ps://npte	l.ac.in/courses	5/201/106	0/20110603	<u>34/</u>								

Government College of Engineering, Karad Final Year (Sem. –VIII) B. Tech. Electrical Engineering Elective V- EE 2813:FACTS

Mapping of COs and POs

Course Outcomes (CO)

Students will be able to

- 1. Apply knowledge to learn FACTS concepts.
- 2. Analyse power system compensation requirements.
- 3. Analyse specific use of FACTS devices
- 4. Analyse compensation need in power system.

$PO \rightarrow$	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO
CO↓													
CO 1	3	1			2	1		1				3	
CO 2	3	2	2	1	2	1		1		1		3	
CO 3	3	3	2	2	1			1		1		3	
CO 4	3	3	1	1	3	1		1	1	1		1	2

Knowledge Level	CT 1	CT 2	TA	ESE
Remember				
Understand				
Apply	5	5	3	20
Analyse	5	5	3	20
Evaluate	5	5	4	20
Create				
TOTAL	15	15	10	60

			Government (College of Enginee	ring, Kara	.d		
		Fin		/III) B. Tech. Elec				
		F	Elective IV - EE2	823: Electric and I	Hybrid Ve	hicles		
Teachir	ng Scher	ne				Examination Sch	eme	
Lectures	S	03Hrs/week				CT – 1	15	
Tutorial	ls	00Hr./week				CT – 2	15	
Total Cı	redits	03				TA	10	
						ESE	60	
						Duration of ESE	02 Hrs	30 Min
	Outcon							
	s will be							
				epts, principles, analy	sis of electr	ricand hybrid vehic	eles.	
			hicle applications.					
				charging and energy i				
4. Co	ompare a	nd contrast cha	racteristics matchin	g of electric machine	and the int	ernal combustion e	ngine.	
				Course Contents				Hours
Unit 1		•	nd electric vehicles.					7
			•	of hybrid and electric	vehicles			
	 Imp 	act of modern d	lrive-trains on energ	gy supplies.				
	• Bas	ics of vehicle pe	erformance, vehicle	power source character	terization –t	ransmission		
	ch	aracteristics.						
Unit 2	• Bas	ic concept of hy	brid traction.					7
	• Intr	oduction to vari	ous hybrid drive-tra	in topologies.				
	 Pow 	er flow control	in hybrid drive-tra	in topologies.				
Unit 3	• Bas	ic concept of el	ectric traction.					6
		•	ous hybrid drive-tra	in topologies.				
Unit 4			-	ed in hybrid and elect	ric vehicles			7
			control of DC Moto	· · · · · · · · · · · · · · · · · · ·	iie veilleies			
		•		Motor drives, Perma	nent Magne	et Bruchless de mote	or dr	
		•		Reluctance Motor dri	•	t Drusiness de mote	пс	
Unit 5				internal combustion e) characteristics		7
Cint		•			•		malaar:	,
Tinit 6		<u> </u>		power electronics ,Se				7
Unit 6			· ·	d their strategies used	•			/
		ssification of dif	ferent energy mana	gement strategies,Co	mparison of	different		
Text Bo		1 77 1 1 1		D 11 ~	0 377.77		<u> </u>	<u> </u>
	ectric An		ectric Vehicles	BrakingSystems	& NVH co	nsiderations, Author	r Jurgen	K.K.,
		Sae Internation	aı					T
	nce Bool		.1. D:		Y1 1			
				nentals, Author Husai				
				ell Vehicles ,Fundam	entais Theo	ry and Design		
A	MUHOF E	isaiii ivi.,Gao Y	imin , Emadia A. C	ic riess newyork.				

Government College of Engineering, Karad Final Year (Sem. – VIII) B. Tech. Electrical Engineering EE2823: Electric and Hybrid Vehicles

Mapping of COs and POs

Course Outcomes (CO)

Students will be able to

- 1. Acquire knowledge about fundamental concepts, principles, analysis of electricand hybrid vehicles.
- **2.** Learn electric drives in vehicle applications.
- 3. Demonstrate the skill for battery charging/discharging and energy management in electric vehicles.
- **4.** Compare and contrast characteristics matching of electric machine and the internal combustion engine.

$PO \rightarrow$	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO
CO↓													
CO 1	2	2	2	1	1	2	2					2	3
CO 2	3	2	3	1	2	3	1					2	3
CO 3	3	2	2	2	3	2	1					2	3
CO 4	2	2	2	1	2	1							3

Knowledge Level	CT 1	CT 2	TA	ESE
Remember				
Understand				
Apply	5	5	3	20
Analyse	5	5	3	20
Evaluate	5	5	4	20
Create				
TOTAL	15	15	10	60

			Governmen						
			al Year (Sem						
			Elective V - El	E 2833 : Ad	lvanced C	Control Sys	stem		
							I		
Teachin							Examination Sch	-	
Lectures		03Hrs/week					CT – 1	15	
Tutorials		00Hr./week					CT – 2	15	
Total Cr	edits	03					TA ESE	10 60	
							Duration of ESE		30 Min
Course	Outcon	nes (CO)					Duration of LSL	02 1113	JO WIIII
Students									
			feedback lineariz	zation for the	nonlinear	control syste	em		
			sliding mode cor						
		ing Mode Contr							
4. Des	ign linea	ar and nonlinear	observers for im	plementing a	advanced co	ontrollers			
				Course (Contents				Hours
Unit 1	Unit 1 Introduction to Linear and Nonlinear System: Review of features of linear and nonlinear systems. Stability analysis of linear and nonlinear systems using Lyapunov approach. Concept of feedback linearization. Conditions of feedback linearization. Partial feedback linearization. Control system design using feedback linearization.								(7)
Unit 2	Varia and va	ble structure sy ariable structure		g mode cont Features of V	trol system /SC and	:Notion of	Variable structure s	system	(7)
Unit 3	Desig systen	n of sliding mo	de controller for	clinear and ance system. D	nonlinear	system: De	sign of SMC for lin linear system using		(6)
Unit 4	Robus	st control design ppt of Second or	•	order sliding der sliding n	nodes.		alysis of First Orde	r SMC.	(8)
Unit 5	Design	n of observers f		onlinear syst	tem for im	plementing	advanced control	lers:	(5)
Unit 6	power	electronic syste		esign for PMS			ed Controller design vanced controller de		(7)
Text Bo									
			1 0 1				Prentiss hall Press, 1	991.	
		<u>, , , , , , , , , , , , , , , , , , , </u>	eon,—Sliding n	node control	Theory and	l Applicatio	ns , Pearson, 2010.		,
Referen									
Pul	olisher	•				ing Mode	Control and Obser	vation S	Springer
2. Ha	ssan K.	Khalil, —Nonlir	near Control Pear	rson Publishe	er 2015				

Government College of Engineering, Karad

Final Year (Sem. – VIII) B. Tech. Electrical Engineering

Elective V - EE 2833 : Advanced Control System

Mapping of COs and POs

Course Outcomes (CO)

Students will be able to

- 1. Demonstrate knowledge of feedback linearization for the nonlinear control system
- 2. Demonstrate knowledge of sliding mode control for linear and nonlinear systems
- 3. Design Sliding Mode Control
- **4.** Design linear and nonlinear observers for implementing advanced controllers

PO →	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO	PO	PO	PSO
CO↓										10	11	12	
CO 1	2	3	2	1	1	2	2					2	3
CO 2	1	2	3	1	1	3	1					1	3
CO 3	3	1	1	2	3	2	2					2	3
CO 4	2	2	2	1	2	1							3

Knowledge Level	CT 1	CT 2	TA	ESE
Remember				
Understand				
Apply	5	5	3	20
Analyse	5	5	4	20
Evaluate	5	5	3	20
Create				
TOTAL	15	15	10	60

			Govern	ment College	of Engineer	ing, Karad			
		Fina		em. – VIII) B.					
				EE 2843 : Po					
Teach	ning Scher	me					Examination Sch	eme	
Lectu	res	03Hrs/week					CT – 1	15	
Tutor		00Hrs/week					CT – 2	15	
Total	Credits	03					TA	10	
							ESE	60	
•	0 1	(00)					Duration of ESE	02 Hrs	30 Min
	se Outcon								
	nts will be		am arraliter i	ndiaaa					
		the different power ill effects of all p			nower eyete	m			
		g and grounding p		ty problems in	power syste	111.			
		monics and filters		system					
. 123		inomes and interes	om power i	*	Contents				Hours
Unit 1	1 Interests	ation to Down O				lama Caua	as DO muchlama E6	r r	
Unit .							es PQ problems, Ef asibilities of suppli		(4)
	Users	Joienis on users,	Ciassificat	ion of intigat	ion techniqu	ies, Kespoi	isionities of suppli	cis and	
Unit 2		Ouality Standard	s and Mor	nitoring : Pow	er Ouality T	erminologi	es, Definitions, Sta	ndards,	(6)
		oring, Numerical(s		8	(,,	,	(-)
Unit 3	3 Applic	ation of power e	lectronic o	controllers in	power syste	m, Distribu	ition Static compen	nsators,	(6)
		• • •	_	·	R), Unified	Power Qua	ality Conditioner (UPQC),	
		Power Transfer Sv							
Unit 4							non-sinusoidal coi		(8)
							monic Assessment		
	Harmo		monic dist	ortion, Devices	s for controll	ing narmon	ic distortion, Stand	ards on	
Unit :		: Passive Power F	ilters Acti	ve Power Filte	rs Hybrid Po	ower Filters	Numerical(s)		(8)
Unit		tudies on Power Q			is, ilyona i	ower rinters	, i vaineriear(b)		(4)
Textb			<u> </u>						(-)
1. I	Power Qua	lity Problems and	Mitigation	Techniques b	y Bhim Sing	h, Ambrish	Chandra, Kamal A	l-Haddad	; John
_	Wiley & S	·	C	•			•		
		Power System Qua					Hill		
		wer Quality by G.	T.Heydt; 2	^{2nd} Ed., Stars in	a Circle Pub	olications			
	ence Bool								
			9	topadhyay, M	adhuchhanda	aMitra, San	narjitSengupta; Spr	inger Do	rdrecht
		London NewYor							
	Power Qua Fairmont F		ase Studie	sfor Trouble-s	hooters by P	orter, Greg	ory J., Van Sciver,	J. Andre	w; The
		tem Quality Asses	sment by J	. Arrillaga, N.	R. Watson; 3	3 rd Ed., Johr	n Willey & Sons		
	l Links	2 3				.,	,		
						1	l		
Usefu		l.ac.in/courses/108	3/102/1081	02179/	(Prof Bhim	Singh – II	Γ Delhi)		
Usefu 1. l	nttps://npte	el.ac.in/courses/108 el.ac.in/courses/108			•		Γ Delhi) a – IIT Roorkee)		

Government College of Engineering, Karad Final Year (Sem. – VIII) B. Tech. Electrical Engineering **Elective V- EE 2843 : Power Quality & Harmonics**

Mapping of COs and POs Course Outcomes (CO)

Students will be able to

- 1. Understand the different power quality indices.
- 2. Interpret the ill effects of all power quality problems in power system.
- 3. Solve wiring and grounding problems.
- **4.** Analyse harmonics and filters in power system.

PO →	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO
CO ↓													
CO 1	2	3	2	2	2	2	1					2	1
CO 2	3	2	3	2	2	3	1					2	1
CO 3	3	2	2	2	3	2	1					2	
CO 4	2	2	2	2	2	1	1					2	2

Knowledge Level	CT 1	CT 2	TA	ESE
Remember	-	-	-	-
Understand	-	-	-	-
Apply	5	5	3	20
Analyse	5	5	3	20
Evaluate	5	5	4	20
Create	-	-	-	-
TOTAL	15	15	10	60

						eering, Karad			
		Final Y				lectrical Engi	neering		
			EE28	804 : Emb	edded Sys	tem Lab			
	ching Schen	ne					Examination Sch	eme	
Lecti							CT – 1		
Tuto							CT – 2		
Pract		02Hrs/week					CA	25	
Tota	l Credits	01					ESE	50	
							Duration of ESE	3 hrs.	
	rse Outcom								
	ent will be a								
1.		nd interpret various			cols in Emb	edded Systems.			
2.		ardware configuration							
3.		est and debug code							
4.	Apply the	knowledge of Emb	edded Syste				ions.		
					Experimen				
_	eriment 1						ay with LPC 21XX	•	
_	eriment 2	To write embedde							
	eriment 3	To write embedde							
Exp	eriment 4	To write embedde	d C progran	n for interfa	acing UAR	T with LPC 212	XX.		
Exp	eriment 5	To write embedde	d C progran	n for interfa	acing Keyb	oard with LPC	21XX		
Exp	eriment 6	LED interfacing w							
Exp	Experiment 7 I2C EEPROM interfacing with LPC 21XX								
Exp	eriment 8	RTC interfacing w							
_	eriment 9	Stepper Motor into	erfacing with	h LPC 21X	XX				
	eriment 10	Zigbee interfacing	_						

Government College of Engineering, Karad
Final Year (Sem – VIII) B. Tech. Electrical Engineering
EE2804: Embedded System Lab

Mapping of COs and POs

Cours	Course Outcomes (CO)								
Studen	Student will be able to								
1.	Analyse and interpret various communication protocols in Embedded Systems.								
2.	Identify hardware configuration of LPC21XX								
3.	Program, test and debug code using Keil software.								
4.	Apply the knowledge of Embedded Systems to build small Embedded applications.								

PO →	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO
CO↓													
CO 1	2	2	2	1	1	2	2					2	3
CO 2	3	2	2	1	2	3							2
CO 3	3	1	1	2	3	2	1					2	3
CO 4	2	2	2	1	1	1							3

- Assessment for laboratory work will be based on skills acquired by students during the course.
 Continuous Assessment Sheet (CAS) will be maintained for each student.

Knowledge Level	CT 1	CT 2	CA	ESE
Remember				
Understand				
Apply			10	10
Analyse			10	10
Evaluate			5	5
Create				
TOTAL			25	25

		Gov	ernment College of Engineering, Kara	d	
		Final Year	r (Sem. –VIII) B. Tech. Electrical Engi	neering	
	ı		EE 2815: FACTS Lab		
	ching Scheme	e		Examination Sch	ieme
Lect				CT – 1 CT – 2	
	riais ticals	02 H/1-		CI – Z	25
	l Credits	02 Hrs/week 01		ESE	25 50
Tota	1 Cleuits	01		Duration of ESE	3 hrs
Con	rse Outcome	os (CO)		Duration of ESE	3 1118
	ent will be ab	* *			
1.			ctive power compensation using.		
2.	110	ries and shunt compen	1 1		
3.	Analyse pro	oper selection of FACT	ΓS controller.		
4.	Create MA	TLAB/Scilab simulation	ons.		
			Experiments		
			ng MATLAB/ Scilabsimulationfrom List give	en below	
	1. A ₁	pplication of TCR fo	or VAR compensation		
	2. A ₁	pplication of TSC fo	or VAR compensation		
	3. A ₁	pplication of FC-TC	R for VAR compensation		
			CR for VAR compensation		
		-	COM for VAR compensation		
			and STATCOM combination for VAR	compensation	
			C for VAR compensation	1	
		-	for VAR compensation		
			for VAR compensation		
			for VAR compensation		
		-	for VAR compensation		
	11	princation of CITE	101 , 111 compensation		

Government College of Engineering, Karad
Final Year (Sem. – VIII) B. Tech. Electrical Engineering
EE2815 : FACTS Lab

Mar

ppin	g of COs and POs
Co	ourse Outcomes (CO)
Sti	udent will be able to
1.	Apply FACTS controllers for reactive power compensation using.
2.	Evaluate series and shunt compensators applications.
3.	Analyse proper selection of FACTS controller.
4.	Create MATLAB simulations.

$PO \rightarrow$	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO
CO↓													
CO 1	2	2	2	1	1	2	2	1					
CO 2	3	2	2	1	2	3		1				2	
CO 3	3	1	1	2	3	2	1		1	2		2	2
CO 4	2	2	2	1	1	1		2	3	2		2	2

- Assessment for laboratory work will be based on skills acquired by students during the course.
 Continuous Assessment Sheet (CAS) will be maintained for each student.

Knowledge Level	CT 1	CT 2	CA	ESE
Remember				
Understand				
Apply			5	5
Analyse			10	10
Evaluate			5	5
Create			5	5
TOTAL			25	25

			overnment Co					
			al Year (Sem			Engineering		
		EE	2825: Electric a	id Hybrid Vehi	cles Lab			
	hing Scher	ne				Examination Sch	eme	
Lecti						CT – 1		
Tuto						CT – 2		
Pract		02 Hrs/week				CA	25	
Tota	Credits	01				ESE	25	
	0 1	(00)				Duration of ESE	3 hrs	
	rse Outcom	· /						
	ent will be a		. 1	1' 6 1 4	. 1.1 1	• ,•		
1.		t and Demonstrate th					NA ATTY A	D
2.		nd the basics of elec						
3.		Create Simulation m		nanagement & t	oattery chargin	g/discharging-SOC	for electri	ic &
		nicle application usir		: fa., a1. a4	0- 11	11:	~ MATI AD	<u> </u>
4.	Develop/C	Create Simulation mo	dels of electric di			tie application using	g MATLAB).
Eveno	eriment 1	Simulation of brus	hlass d.a. matan d	Experiments		AATI AD		
	eriment 2	Simulation of Indu						
Exp	eriment 3	Simulation of pern MATLAB.	nanent magnet syn	chronous motor	drive for EV a	ipplication, using		
Exp	eriment 4	Simulation of DC	motor drive for E	V application, us	sing MATLAB	•		
Exp	eriment 5	Simulation of swit	ched reluctance m	otor drive for EV	V application, u	using MATLAB.		
Exp	eriment 6	Simulation of batte	ery operated electi	ic vehicle using	MATLAB.			
Exp	eriment 7	Simulation of ener	gy management f	or EV application	n, using MATI	AB.		
	eriment 8	Simulation of batte MATLAB.	ry chaging/discha	rging-SOC, char	racteristics for	EV application usir	ng	
Exp	eriment 9	Simulation of rege	nerative braking f	or EV applicatio	n, using MATI	LAB.		
	eriment 10	Simulation of spee						

Government College of Engineering, Karad Final Year (Sem. – VIII) B. Tech. Electrical Engineering EE2825: Electric and Hybrid Vehicles Lab

Mapping of COs and POs

apj	ng of COs and POs
	ourse Outcomes (CO)
	udent will be able to
1	Impliment and Demonstrate the various electric drives for electric vehicle application.
1	Comprehend the basics of electric & hybrid vehicle fundamentals for practical implementation using MATLAB.
(Develop/Create Simulation models of energy management & battery charging/discharging-SOC, for electric &
	hybrid vehicle application using MATLAB.
4	Develop/Create Simulation models of electric drives for electric & hybrid vehicle application using MATLAB.

$PO \rightarrow$	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO
CO↓													
CO 1	2	2	2	1	1	2	2					2	3
CO 2	3	2	2	1	2	3							2
CO 3	3	1	1	2	3	2	1					2	3
CO 4	2	2	2	1	1	1							3

- 1. Assessment for laboratory work will be based on skills acquired by students during the course.
- 2. Continuous Assessment Sheet (CAS) will be maintained for each student.

Knowledge Level	CT 1	CT 2	CA	ESE
Remember				
Understand				
Apply			10	10
Analyse			10	10
Evaluate			5	5
Create				
TOTAL			25	25

			Governme																																																																																																
		Final Y	'ear (Sem.	n. –	. –	_	_			•	•	١.	۱.	ı.	١.	•	•	•	•		-	_					_					_	_			1	١	١	1	V	1	1	V	V	1	7		I	İ	I))]	B	8.	. '	T	[e	cł	1.	F	Cl	e	C	t	r	ri	i	C	a	l	F	7	n	g	iı	16	e	r	ir	Į	5																		
			EE 2835	5 : A	: A	<i>. A</i>	. 1	:	:	:	•					•	:	:	:	:								1	1	1	Ä	A	A	١	1	١	1	V			((Ċ	d	ł	ŀ	1	V	a	n	ıc	ce	90	d	(C	C	01	nt	r	ol	1 5	S	y	y:	S	st	te	en	n]	I	1	ak)																								
Teac	ching Schen	ne]	E	K	11	n	iı	18	ıti	ίο	n	1 8	30	cł	16	er	n	e							
Lecti																																																																																- 1										-		-							
Tuto	rials																																																																											(7	Γ	_	- 2	2									-		_							
Pract	ticals	02Hrs/week																																																																										(2	4											Ī	1	25	5							
Tota	l Credits	01]	Ξ	SI	Ξ										Ī	1	25	5							
)	11	18	ıti	О	n	o	f	E	S	E	}	Ī	1	3	h	rs	3					
Cou	rse Outcom	nes (CO)																																																																																																	
Stud	ent will be a	ible to																																																																																																	
1.	Implemen	t advanced controlle	er in simulat	latio	tio	tio	tic	ti	ti	ιt	ı	11	a	a	11	ı	ιt	ιt	ti	ti	i	i	i	i	i	i	i	i	ĺ	C	O	0))]	1	r	n	n	1	1	1	ı	l																																																								
2.	Implemen	t advanced controlle	er in experii	rime	me	me	me	m	n	n	1	i	11	11	i	1	r	n	n	r	n	n	n	n	n	n	n	10	16	16	ıe	e	e	2	21	1	r	n	n	n	1	1	1	t	t	t	. 1	u	ısi	ir	ng	g	F	₹′	T	Ί																																											
																																																					F	E	X	p	oe	ri	m	eı	nt	ts																																					
Expe	eriment 1	To implement con	troller using	ng f	g fo	g f	g	g	g	3	18	ı	1	1	ı	18	٤	2	g	g	3	5	5	5	5	5	5		1	1	f	f	f	E	Ė	e	e	Э	9)	•	•	ϵ	e	9)(C	ll	ba	ac	ck	k	1	iı	ne	e	a	ri	za	ti	O	n	i	n	1	S	Si	ir	nı	u]	la	a	ti	01	n																								
Exp	eriment 2	To implement FO	SMC in sim	imul	nula	nul	ıu	าน	າເ	n	n	r	Υ	Υ	r	n	n	n	าเ	າເ	ı	u	u	ι	υ	u	u	u	1	ı	ıl	1	1	lá	г	a	a	a	1	ı	ıt	ιt	t	ti	i	i	į	0	n																																																		
Exp	eriment 3	To Implement SO	SMC in sin	imul	nul	nul	าน	nι	n	n	r	Υ	n	n	Υ	r	n	n	n	າເ	n	u	ι	ι	ι	ι	u	u	u	u	ı	ıl	1	1	l	г	a	a	a	ı	ı	ı	ιt	t	ti	i	i	o	n	l																																													Ī				
Exp	eriment 4	To implement Ob	server in sin	imu	nul	nu	nι	n	n	n	n	n	r	r	n	n	n	n	n	n	n	n	1	1	1	1	n	ıı	ι	υ	u	ı	1	ıl	1	1	l	1	г	г	a	a	a	11	ıt	t	i	ic	on	1					_																								_	_			_	_								_	_	_	Ť	_	_	_	_
•	eriment 5	To validate contro																					_	_																															_																								_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	†	_		_	-
_	eriment 6	To validate observ							_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_								_																								_	_	_	_	_	_	_	_	_	_	_	_	_	_		_	†	_	_	_	_
P	Note	Each group will w																																															r	ลเ	ct	tio	С	a	_ 1	S	77	JS.	te	m	ıs	(F	R	l T	110	10	-k	۲ (\overline{C}	C)1	יו	ve	r	e	r	F	36)()S	t	$\overline{\mathbb{C}}$	 01	ns	ve	r	<u>†</u> €	r		_	_	_	_	\dagger	_	_	_	_
	1.50	PMSM Motor, Inc																																																																											,					•		J 1	- '	. ~		_		,									
		,					_	_	_											_	_	_			_	_						_	_	_	•	•	,	J		<i>J</i>	,	_	_	_	_	_					7	_	_	_		Г						_		J			_			7			_	<u>/</u>					_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	\dagger	_	_	_	_

Government College of Engineering, Karad
Final Year (Sem. – VIII) B. Tech. Electrical Engineering
EE 2835 : Advanced Control System Lab

Mapping of COs and POs

Course	e Outcomes (CO)
Studen	at will be able to
1.	Implement advanced controller in simulation
2.	Implement advanced controller in experiment using RTI

$PO \rightarrow$	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO ₁
CO↓													
CO 1	2	2	2	1	3							1	1
CO 2	2	2	0	1	3							1	1

Knowledge Level	CT 1	CT 2	CA	ESE
Remember				
Understand				
Apply			10	10
Analyse			10	10
Evaluate			5	5
Create				
TOTAL			25	25

	17° 1						
		1L 2045 , I	Quant	ty & Harmonies I	Lab		
hing Schen	ne		l		Examination Sch	neme	
res					CT – 1	-	
ials						-	
cal					_	_	
Credits	01						
-	(60)				Duration of ESE	3 hrs	
		ma nain a Di	O monitorio : :	in atminio anta			
			•				
				instruments.			
Evaluate P	Q problems with su	madie soluti		periments			
riment 1	Effect of non-lines	ır loads on r		Definition is			
				harmonics (experi	mental / simulation bas	sed)	
		_				4504)	
				ital / Billialation oas			
				e, passive, hybrid)			
	111119441011 01 114111		5 11100151 (000110	, passive, iljeila)			
	List of exr	periments fo	or reference.				
				ons based on conten	nts in theory course to	be	
					,		
	• At least 01	case study	based on indu	strial / commercial	domestic problems.		
exam shall	be based on the exi	periments p	erformed / sim	ulated during labo	ratory hrs and/or orai	examina	ation to
					y		
	-	-					
	res fals cal Credits Se Outcom nt will be a Monitor Po Analyse Po Evaluate P Priment 1 Priment 2 Priment 3 Priment 5 Priment 5 Priment 6 Priment 7 Priment 8	res tals	Final Year (Sem EE 2845 : 1 ning Scheme res ials cal 02 Hrs/week Credits 01 se Outcomes (CO) nt will be able to Monitor Power Quality problems using Portion of Power Quality problems using Power Quality proble	Final Year (Sem. – VIII) B. T EE 2845 : Power Quali ning Scheme res cal 02 Hrs/week Credits 01 See Outcomes (CO) Int will be able to Monitor Power Quality problems using PQ monitoring in the problems with suitable solution. Experiment 1 Effect of non-linear loads on power quality. Friment 2 Demonstrate voltage and current distortion of the priment 3 Demonstrate voltage and current distortion of the priment 4 Effect of load on neutral current. (experiment friment 5 DSTATCOM for mitigation of harmonics. Friment 7 UPQC for mitigation of voltage quality. Friment 8 Mitigation of harmonics using filters. (active friment 8 Mitigation of harmonics using filters. (active friment 8 Mitigation of harmonics using filters. (active friment 9 At least 01 case study based on industrial case study	Final Year (Sem. – VIII) B. Tech. Electrical Eng EE 2845 : Power Quality & Harmonics I sing Scheme res cal	res CT - 1 als CT - 2 cal 02 Hrs/week CA Credits 01 ESE Duration of ESE See Outcomes (CO) It will be able to Monitor Power Quality problems using PQ monitoring instruments. Analyse Power Quality problems using PQ monitoring instruments. Evaluate PQ problems with suitable solution. Experiments Iriment 1 Effect of non-linear loads on power quality. Iriment 2 Demonstrate voltage and current distortion / harmonics. (experimental / simulation based) Iriment 3 Demonstrate voltage and current distortion / sag & swell. (experimental / simulation based) Iriment 4 Effect of load on neutral current. (experimental / simulation based) Iriment 5 DSTATCOM for mitigation of harmonics. Iriment 6 DVR for mitigation of voltage quality. Iriment 7 UPQC for mitigation of harmonics. Iriment 8 Mitigation of harmonics using filters. (active, passive, hybrid) • List of experiments for reference. • Minimum 05 experiments / simulations based on contents in theory course to designed and executed. • At least 01 case study based on industrial / commercial / domestic problems.	Final Year (Sem. – VIII) B. Tech. Electrical Engineering EE 2845 : Power Quality & Harmonics Lab ling Scheme Res —— CT — 1 —— lals —— CT — 2 —— cal 02 Hrs/week —— CA —— 25 Credits 01 —— ESE —— 50 Duration of ESE 3 hrs se Outcomes (CO) Int will be able to Monitor Power Quality problems using PQ monitoring instruments. Analyse Power Quality problems using PQ monitoring instruments. Evaluate PQ problems with suitable solution. Experiment 1 —— Effect of non-linear loads on power quality. Iriment 2 —— Demonstrate voltage and current distortion / harmonics. (experimental / simulation based) Iriment 3 —— Demonstrate voltage and current distortion / sag & swell. (experimental / simulation based) Iriment 4 —— Effect of load on neutral current. (experimental / simulation based) Iriment 5 —— DVR for mitigation of harmonics. Iriment 6 —— DVR for mitigation of harmonics. Iriment 7 —— UPQC for mitigation of harmonics. Iriment 8 —— Mitigation of harmonics using filters. (active, passive, hybrid) • List of experiments for reference. • Minimum 05 experiments for reference. • At least 01 case study based on industrial / commercial / domestic problems.

Government College of Engineering, Karad Final Year (Sem. – VIII) B. Tech. Electrical Engineering EE 2845 : Power Quality & Harmonics Lab

Mapping of COs and POs

- II - 6	
Course	e Outcomes (CO)
Studen	it will be able to
1.	Monitor Power Quality problems using PQ monitoring instruments.
2.	Analyse Power Quality problems using PQ monitoring instruments.
3.	Evaluate PQ problems with suitable solution.

PO →	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO
CO↓													
CO 1	2	1	-	-	2	-	1	2	-	-	-	-	-
CO 2	1	2	-	-	-		-	2	-	-	2	-	-
CO 3	2	2	-	1	-	1	-	3	-	-	-	-	3

- 1. Assessment for laboratory work will be based on skills acquired by students during the course.
- 2. Continuous Assessment Sheet (CAS) will be maintained for each student.

Knowledge Level	CT 1	CT 2	CA	ESE
Remember	-	-	-	-
Understand	-	-	-	-
Apply	-	-	10	10
Analyse	-	-	10	10
Evaluate	-	-	5	5
Create	-	-	-	-
TOTAL	-	-	25	25

		Government College of Engir		•		
	Fina	l Year (Sem. – VIII) B. Tech. E		ering		
		EE 2806: Project (Acade	mic Mode)			
	1			• 4• 6.1		
Teaching S				amination Sch		
Lectures Tutorials	00 14 Hrs./wek			A– I A-II	50	
Total Credit					50	
Total Cledit	07		ES		150	
				ration of ESE	03 Hrs	
Course Out	tcomes (CO)		Di	itation of ESE	03 1113	
Students wi						
		ough literature and market survey; si	ight visits: interacti	on with commu	nity or ind	lustry.
	conomic survey etc.		8		· y	<i>J</i> ,
2. Analysi	is and design produc	, processes, methods and systems us	ing multidisciplina	ry knowledge		
		t of software and measurement method				
4. Evaluat	te deployment, imple	mentation and demonstration of proj				
		Course Contents				Hours
	 Conceptualiza 	tion of project theme (during winter	vacation)			
	2. Learning state-	of-the-art related to project idea throu	ugh literaturereviev	v /survey/		
vi	sits/interactions (2 v	veeks)				
	3. Designing of p	roject theme and selection of compor	nents (2weeks)			
	4. Procurement o	f components (1week)				
	5. Assembly and	Fabrication of project work (3 weeks)			
	6. Testing and me	odifications (2 weeks)				
	7. Report writing	and conference ready paper based or	n project work (2 w	eeks)		
	8. Presenting pro	ect in front of departmental committee	ee.			
	9. Submission of	hard bound project report copy.				

Government College of Engineering, Karad

Final Year (Sem – VIII) B. Tech. Electrical Engineering EE 2806: Project (Academic Mode)

Mapping of COs and POs

Course Outcomes (CO)

Students will be able to

- **1.** Evaluate innovative idea through literature and market survey; sight visits; interaction with community or industry, socio-economic survey etc.
- 2. Analysis and design product, processes, methods and systems using multidisciplinary knowledge
- 3. Create product, development of software and measurement methods
- **4.** Evaluate deployment, implementation and demonstration of project in group

PO →	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO
CO↓													1
CO 1	3	1	1	3	2	3	2	2	3	3	1	3	1
CO 2	2	2	2	3	3	2	3	3	3	2	3	3	2
CO 3	3	3	3	3	3	3	2	2	3	2	3	3	1
CO 4	3	2	3	2	3	3	1	3	3	3	3	3	

Knowledge Level	ISA-I	ISA-II	TA	ESE
Remember				
Understand	10			50
Apply	10	10	20	
Analyse	20	10	10	50
Evaluate	10	10	10	50
Create	0	20	10	
	50	50	50	150

Government College of Engineering, Karad						
Final Year (Sem – VIII) B. Tech. Electrical Engineering						
EE2807 MOOC-I (Industry Mode)						
Teaching Scheme			Examination Scheme			
Lectures	-		ISE	-		
Tutorials	-		ESE	100		
Total Credits	02					
Course	Contents					

Students should complete the MOOC course certification in the respective domain offered by Electrical Engineering Department and submit a copy of the certificate to Head of Department prior to ESE.

Guidelines:

- Selection of the MOOC course should be with the prior permission of Head of Department
- Duration for completion of MOOC course certification is minimum 8 Weeks.
- Platform: NPTEL or SWYAM only
- □ Assessment Guideline:- The evaluation of the MOOC Course will be based on at actual score secured by the student in NPTEL or SWAYAM course certification and it will be converted to ESE score.
- If the student unable to submit the NPTEL or SWAYAM completion Certificate, in such cases evaluation will be based on assignment score (60% weightage for NPTEL assignments & assignments given by respective course coordinator) of registered NPTEL/SWAYAM and internal evaluation (40 % weightage).
- The rubrics for internal evaluation are given below.

Government College of Engineering, Karad

Department of Electrical Engineering

A. Y. 2024-25									
Cou	rse Cod	Code: Assessment Sheet Class:			Class:				
Cour	Course Title :-								
	1	T							
Sr No.	Reg. No	Name of Student	Course Title	Knowledge of Course (08 Marks)	Communication Skill (08 Marks)	Presentation Skill (08 Marks)	Content (08 Marks)	Q & A (08 Marks)	Total Marks (out of 40)
1									
2				·		-			

Guide Name and Sign.

Head of the Department

Government College of Engineering, Karad						
Final Year (Sem – VIII) B. Tech. Electrical Engineering						
EE2808 MOOC-II (Industry Mode)						
Teaching Scheme			Examina	Examination Scheme		
Lectures	-		ISE	-		
Tutorials	-		ESE	100		
Total Credits	02					
Course Contents						

Students should complete the MOOC course certification in the respective domain offered by Electrical Engineering Department and submit a copy of the certificate to Head of Department prior to ESE.

Guidelines:

- Selection of the MOOC course should be with the prior permission of Head of Department
- Duration for completion of MOOC course certification is minimum 8 Weeks.
- Platform: NPTEL or SWYAM only
- □ Assessment Guideline:- The evaluation of the MOOC Course will be based on at actual score secured by the student in NPTEL or SWAYAM course certification and it will be converted to ESE score.
- If the student unable to submit the NPTEL or SWAYAM completion Certificate, in such cases evaluation will be based on assignment score (60% weightage for NPTEL assignments & assignments given by respective course coordinator) of registered NPTEL/SWAYAM and internal evaluation (40 % weightage).
- The rubrics for internal evaluation are given below.

Government College of Engineering, Karad

Department of Electrical Engineering

A. Y. 2024-25									
Cour	urse Code : Assessment Sheet			neet	Class:				
Course Title :-									
	ı	I						I	
Sr No.	Reg. No	Name of Student	Course Title	Knowledge of Course (08 Marks)	Communication Skill (08 Marks)	Presentation Skill (08 Marks)	Content (08 Marks)	Q & A (08 Marks)	Total Marks (out of 40)
1									
2									

Guide Name and Sign.

Head of the Department

		Government College of Engineering, Karad								
	Fina	al Year (Sem. – VIII) B. Tech. Electrical Engineering								
		EE 2809: Project (Industry Mode)								
Teaching Sche	mo	Examination Schen	n o							
Lectures	00		75							
Practical	All Hrs/week		75 75							
Total Credits	12		100							
1 Star Credits	12		300							
			02 Hrs							
Course Outcom	mes (CO)									
Students will be	e able to									
		se with industry community.								
11.		ge to select project in industry.								
	roblem statement									
4. Create and	design project in	•								
		Course Contents		Hours						
		and time frame of industry project will be decided by concerned internal	guide							
and 1	ndustry expert in	tune with the academic requirements of the institute.								
The	candidata nurcui	ng industry project should maintain the work diary and present it to in	ntarnal							
		rtnight. The student has to present project work in front of departn								
	committee and submit hard bound project report.									
Comm	intee and buomin	i mira douna project report.								

Government College of Engineering, Karad

Final Year (Sem. – VIII) B. Tech. Electrical Engineering

EE 2809: Project (Industry Mode)

Mapping of COs and POs

Course Outcomes (CO)

Students will be able to

- 1. Communicate and familiarise with industry community.
- 2. Apply theoretical knowledge to select project in industry.
- 3. Evaluate problem statement.
- 4. Create and design project in industry.

PO →	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO
CO↓													
CO 1	3	3	1	1		1		3	2	3	1	3	
CO 2	2	2	1	3	3	2	3	3	2	2	3	3	3
CO 3	3	3	3	3	3	3	2	1	3	3	3	3	2
CO 4	3	3	3	2	3	2	2	3	3	3	3	3	2

Assessment Pattern(with revised Bloom's Taxonomy)

Knowledge Level	CT 1	CT 2	TA	ESE
Remember				
Understand				
Apply			50	100
Analyse			50	100
Evaluate			50	100
Create			100	
TOTAL			250	300

Audit Course sem VII

		Governmen	nt College of Engin	eering, K	arad									
	F		– VII) B. Tech. Ele											
Audit (undations of Data S			Learning l	Lab							
Laboratory S					Examination									
Practical		04 Hrs/week			ISE	-								
Total Credits		Audit Course			ESE	-								
_		ics, Basic Program												
		Students will be	able to ng statistical methods	and tools	to extract mass	ninaful inaia	hta							
CO2	Implement a	and manage efficie	nt data storage, retriev	val, and pr	eprocessing fo	r decision-m	aking.							
CO3	Develop and	velop and evaluate machine learning models and neural networks to solve complex problems.												
CO4	Utilize cloud	d computing resou	rces and ensure ethica	al consider	ations in the de	esign of AI s	ystems.							
		Co	ourse Contents				CO							
Implementat	ion of follo	wing concepts				'								
Experiment	1 Data v	visualization effect	iveness evaluation wit	th Python	and Tableau		CO1							
Experiment	2 Real-v	vorld dataset explo	oratory analysis using	Python /R			CO1							
Experiment	3 Comm	non data cleaning o	hallenges and solution	ns using P	ython and SQI		CO2							
Experiment	4 Databa	ase performance o	ptimization strategies	assessmen	t.		CO2							
Experiment	5 Machi	ne learning algo	orithm performance	comparis	on using Te	ensorFlow,	COA							
	PyTor	ch, and scikit-lear	1				CO3							
Experiment	6 Machi	ne learning model	monitoring framewo	ork develop	oment using T	ensorFlow	CO3							
	Servin	g and Prometheus					COS							
Experiment	7 Neura	l network archite	cture comparison for	r image c	lassification ta	asks using								
	Tenso	rFlow and PyTorc	h with and without Hy	yperparam	eter tuning		CO3							
Experiment	8 Transf	fer learning technic	ques implementation a	and evalua	tion		CO3							
Experiment	9 Scalab	pility assessment	using containerization	on technol	ogies like D	ocker and	664							
	Kuber	netes.					CO4							
Experiment	10 Server	less architecture in	mplementation and eff	ficiency ev	aluation.		CO4							
Experiment	11 Bias o	detection experim	ents using fairness	metrics ar	nd diverse da	tasets and								
	Fairne	ess-aware model tra	aining techniques expl	loration			CO4							
Experiment	12 Regula	atory compliance a	nalysis and strategies	developm	ent		CO4							
List of Subm														
Minimum No	. of Experin	nents: 10												

Mapping of COs and POs

$PO \rightarrow$	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2
CO↓														
CO 1	2	3	3	3	3	1	ı	1	ı	ı	ı	2	•	2
CO 2	2	2	2	2	3	2	-	-	2	2	2	2	1	-
CO 3	3	3	3	3	3	-	1	2	1	2	3	2	-	1
CO 4	2	3	2	3	3	2	2	2	2	2	1	2	2	-

1: Slight (Low)

2: Moderate (Medium)

3: Substantial (High)

Assessment Guideline: Course coordinator will decide the suitable assessment method for internal evaluation

for the course completion.

*Note: Provide detailed feedback on each experiment and overall performance, focusing on:

- Technical skills and proficiency.
- Creativity and problem-solving abilities.
- Communication and presentation skills.
- Collaboration and peer review contributions.

			Governmer	nt College of 1	Engineering, F	Karad		
		F	inal Year (Sem					
			Audit Course La					
Laboratory	y Sche					Examination	Scheme:	
Practical	,		04 Hrs/week			ISE	-	
Total Credi	ts		Audit Course			ESE	-	
Prerequisit	te: Ma	athemati	ics, Basic Program	nming skills	-		- 1	
Course Ou	tcome	es (CO):	Students will be a	ble to				
CO1	Und	erstand t	the fundamentals	of IoT hardware	and software.			
CO2	Deve	elop pro	ficiency in progra	mming and sim	ulating IoT devi	ces.		
CO3	Gair	knowle	edge of artificial in	telligence conc	epts and their in	tegration with	IoT systems.	
CO4	Expl	lore the j	practical application	ons and implica	tions of IoT tecl	nnologies in va	arious domaii	1S.
			C	ourse Contents				CO
Implement	ation	of follo	wing concepts					
Experime	nt 1	Famili	arization with IoT	development k	its (e.g., Rasphe	rry Pi. Arduin	o. ESP32)	CO1
Experime			standing the comp					CO1,
		011001	sumumg me comp	onomis uno oup		preserve		CO2
Experime	nt 3	Explor	ring different types	s of sensors (ter	nperature, humi	dity, motion, 1	ight, etc.)	CO2,
•		1	<i>C</i> 31	•	,	•		CO3
Experime	nt 4	Hands-	on exploration of	actuators (mot	ors, servos, rela	ys) and their a	pplications	CO1
-		in IoT	•			•	•	
Experime	nt 5		IoT Circuit Design				op features	CO4
Experime	nt 6	Progra	mming IoT device	es using Block	Designer Softwa	ire		CO1
Experime	nt 7	Simula	nting IoT circuits i	n a virtual envi	ronment			CO2
Experime	nt 8	Hands-	on practice with l	oT developmen	nt boards and sen	nsors		CO4
Experime			mming AI models					CO3
Experimen	nt 10	Impler	nenting Python sc	ripts for data ar	alysis and AI ap	plications		CO2,
								CO3
Experimen			ating AI models w					CO1
Experimen			ew of Artificial Ir					CO4
Experimen	<u>it 13</u>		action to the Intern					CO2
Experimen			standing the conce				_	CO3
Experimen			ing the role of IoT					CO4
Experimen	ıt 16		iques for establish	ning seamless o	connections bety	veen mobile o	levices and	CO1
T •	.4 17		teways				hila da Tam	CO4
Experimen	ıt 17		on exercises dem	constrating the	setup and config	guration of mo	0011e-to-101	CO4
Ermonina	.4 10	Connec		nologies som—	only used in IsT	'annliastions		CO2
Experimen			th exploration		•	_ ^ ^	agadamia	CO3
Experimen	IL 19		tn exploration on the control of the	oi various ty	pes of sensor	s and their	academic	COI
Experimen	ıt 20		al demonstration	e chowcacing	the functional	ity and appl	ications of	CO4
rxperimer	1t 4U		s in IoT systems	is showcashing	me fullchollal	ity and appi	ications of	CO4
List of Sub	missi		5 m 101 systems					
Minimum N			nents: 18					
.,	, , , , ,	-Aperin	101110. 10					

Wapping of Cos and Los														
PO →	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2
CO↓														
CO 1	2	3	3	2	2	2	-	-	2	2	2	3	2	2
CO 2	2	3	2	2	2	2	-	-	3	2	2	3	2	1
CO 3	2	2	3	2	2	2	-	-	2	2	2	2	-	1
CO 4	2	2	2	3	2	2	1	2	3	2	2	3	2	-

1: Slight (Low)

2: Moderate (Medium)

3: Substantial (High)

Assessment Guideline: Course coordinator will decide the suitable assessment method for internal evaluation for the course completion.

^{*}Note: Provide detailed feedback on each experiment and overall performance, focusing on:

- Technical skills and proficiency.
- Creativity and problem-solving abilities.
- Communication and presentation skills.
- Collaboration and peer review contributions.

		Governmer	t College of Engineeri	ng, Karad		
	F		- VII) B. Tech. Electri	<u> </u>	J	
			E2735: Immersive Ga			
Laboratory		Course Lab 1. E	E2755, IIIIIICISIVE Ga		on Scheme:	
Practical	y Scheme.	04 Hrs/week		ISE	_	
Total Credi	te	Audit Course		ESE		
		tics, Basic Program	ming skills	ESE		
		:Students will be a				
CO1			eation basics for virtual e	nvironment design	n	
CO2			physics for engaging gam		ш.	
			scripting for user-friendly			
CO3 CO4				•	ual anhanaama	nto
C04	Design, opt		AR/VR experiences in Un ourse Contents	ity with audio-vis		
T	ation of falls		urse Contents			CO
ımpiemeni	auon oi iono	wing concepts				
Experimen	t 1 Real-	time Rendering C				
	•		time rendering and compa		rendering.	CO1
	•		sent the concept of real-t			COI
	•		rtance of optimization in	real-time renderir	ng.	
Experimen	t 2 Unity	Interface Explor				
	•	1	nterface and features,			CO1
	•	•	various tools available in	•		COI
	•		cene and organize object	s within it.		
Experimen	it 3 Intro	duction to 3D Mo				
	•	Learn basics of 3				CO1
	•		amental 3D modelling co	•	•	001
	•		basic 3D models using m	odelling software		
Experimen	ıt 4 Anim	ation Basics in Ur				
	•		ation concepts and tools			
	•		frame animation, skele	etal animation, ar	nd animation	CO ₂
		blending.				
-	•		imations for objects and o	characters in Unity	7.	
Experimen		's Physics Engine				
	•		Inity's physics engine.	191 District Lands	C-11: 1 1	001
	•		ty's physics components	like Rigid body,	Collider, and	CO2
		Physics material		nity soonos		
Evmaniman	• III Da		physics interactions in U	inty scenes.		
Experimen		esign and Scriptin	g sign principles and basic s	scripting in Unity		
			its using Unity's UI syste			CO3
			C# programming langu		crints for III	COS
		interactions and	1 0 0	450 and 11110 St	cripto for Of	
Experimen	t 7 Andia		ts Implementation			
Laper mich	Audic		and visual effects to Uni	ty projects		
			l effects, background mus		dio.	CO ₃
	•	_	al effects using Unity's VI	_	·	
Experimen	t 8 Unity	Project Optimiza		P		
	·		for optimizing Unity pro	jects.		CO.
	•		(Level of Detail), batchir		culling.	CO ₃
	•		nance in Unity projects.	<i>O,</i>	6	
Experimen	t 9 Augn		up and Interaction			
I	•		nardware and develop AR	experiences.		CO 1
	•		ns and detect/tracking sur			CO4
	•		ects in the real world and		ctions.	
Experimen	t 10 Virtu	al Reality Develor		1	/	
I	•		eriences using Unity. –			601
						CO4
	•	Configure Unity	for Oculus development.	_	I	

interactions like grabbing and teleportation.	
List of Submission:	
Minimum No. of Experiments: 10	

PO →	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2
CO↓														
CO 1	2	3	1	3	2	3	-	-	1	2	3	3	2	2
CO 2	1	1	3	2	2	1	-	-	3	3	1	1	-	-
CO 3	1	3	1	3	1	3	1	3	1	1	3	3	1	1
CO 4	1	1	3	1	3	3	2	1	3	3	1	1	1	-

1: Slight (Low)

2: Moderate (Medium)

3: Substantial (High)

Assessment Guideline: Course coordinator will decide the suitable assessment method for internal evaluation for the course comple

*Note: Provide detailed feedback on each experiment and overall performance, focusing on:

- Technical skills and proficiency.
- Creativity and problem-solving abilities.
- Communication and presentation skills.
- Collaboration and peer review contributions.

		Governm	ent College of Engineering, Ka	arad	
			n – VII) B. Tech. Electrical Er		
	An		22745 : ABAP Programming for		Lah
Lahar			0 0	Examination Sch	
	ratory Schen	4 Hrs/week			eme:
Practi				SE -	
Total	Credits	Audit Course	<u> </u>	ESE -	
<u> </u>	• • 4 T	D :			
		Programming	1 .		
		(CO):Students will be a		TANKA G. 11 1	1.DE
CO1			ey technologies, and use of SAP H		
CO ₂	•	-	erformance issues and understand	SAP HANA's te	chnical requirement
000		nent options	D . G . (GDG) 1.1.1	tal GARATA	
CO ₃			Data Services (CDS), and develo	p with SAP HAI	NA Native SQL an
~ .		aged Database Procedure			11.00
CO ₄	Integrate SA		BAP, transport objects, and optimi	ze reports with Fi	
			urse Contents		CO
Exper	riment 1		NA Basics and Technical Conc	epts, SAP HAN	A CO1
		Studio, ABAP and SA			
Exper	riment 2		P Development Tools (ADT),		CO1
			P to SAP HANA,	On an COI	
E	· 4 2		as Secondary Database— Access via	i Open SQL.	CO2
Exper	riment 3		are ABAP Code for SAP HANA, yse Potential Performance Issues,		CO2
		Guided Perfo	rmance Analysis.		
Exper	riment 4	SQL Performance Ru			CO2
шлрсі	micht 4		ependent Code-to-Data		CO2
			n SQL and Its Limitations.		
Exper	riment 5	Enhanced Open SQL,			CO3
-			Core Data Services in ABAP,		
			in Core Data Services,		
			re Interesting Features of CDS.		
Exper	riment 6	SAP HANA specific C			CO3
			f SAP HANA Native SQL,		
			ged Database Procedures, ged Database Procedures.		
Evnor	riment 7		of Database Flocedures.		CO4
Exper	mient /	Advanced To			CO4
			SAP HANA Objects with ABAP T	ransport Request	s.
Exper	riment 8	Using SAP HANA Ful	ž – – – – – – – – – – – – – – – – – – –		CO4
p			ewer with Integrated Database Acce	ess (ALV IDA),	
			ptimize a Report on Flight Custome		
Exper	riment 9	Describing SAP HAN	ſA,		CO1
		 Understanding 	g the Need for a Modern Digital Pl	atform,	
		 Describing H 	ow SAP HANA Powers a Digital F	Platform,	
Exper	riment 10	Key Technologies of			CO1
		 Deploying SA 			
			e Key Roles in an SAP HANA Imp		
	riment 11		nts of SAP HANA, Technical Depl		CO2
Exper	riment 12		nd Disaster tolerance, SAP	HANA Lifecyc	le CO2
		Management Tools			
	f Submission				

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO 1	3	-	-	-	1	-	-	-	1	2	-	1	2	1

CO 2	3	2	-	3	3	-	-	-	3	3	-	1	1	2
CO 3	3	3	3	3	3	1	ı	1	2	3	ı	1	1	1
CO 4	3	3	3	3	3	1	ı	1	3	3	2	1	2	ı

1: Slight(Low)

2: Moderate(Medium)

3: Substantial(High)

Assessment Guideline: Course coordinator will decide the suitable assessment method for internal evaluation for the course completion

*Note: Provide detailed feedback on each experiment and overall performance, focusing on:

- Technical skills and proficiency.
- Creativity and problem-solving abilities.
- Communication and presentation skills.
- Collaboration and peer review contributions.

		Government	t College of Engineer	ring, Karad						
		•	- VII) B. Tech. Electr							
		Audit Course Lab I: F	EE2755: EV design a	and 3D Modellin	g lab					
Laborato	ry Scheme:			Examinati	ion Scheme:					
Practical		2 Hrs/week		ISE						
Total Cre		Audit Course		ESE						
	Course Outcomes (CO): Students will be able to									
CO1	Demonstrate	various softwares needed for	r 3D modelling							
CO2	Design 3D m	odel of EV components								
CO3	Design of EV	Assembly and integration								
CO4	Create Visual	ization renders of EV								
		Co	urse Contents			CO				
Experime	ent 1	Explore 3D modeling softwa	ires			CO1				
Experime	ent 2	Introduction Solidwork soft	tware			CO1				
Experime	ent 3	3D modeling of EV compone	ents			CO2				
Experime		Drafting of EV components in				CO2				
Experime	ent 5	Basic sketching techniques	need for EV compone	nts		CO2				
Experime	ent 6	EV layout design				CO3				
Experime	ent 7	Structure design of EV in sol	lidworks			CO2				
Experime	ent 8	parts design of EV componer	nt			CO2				
Experime		Surface modeling of EV com	•			CO2				
Experime		Assembly sequencing of EV	components.			CO3				
Experime		Vehicle integration of EV pa				CO3				
Experime		Visualization techniques for	3D data			CO4				
List of Su	bmission:									

Minimum No. of Experiments: 10

mappi	ing or C	Os anu	1 05.											
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO 1	2	2	1	2	3	1	2	1	2	1	1	2	-	1
CO 2	3	2	1	3	3	2	2	1	1	1	1	2	1	2
CO 3	2	3	3	1	3	1	3	2	2	2	2	3	-	1
CO 4	3	3	3	3	3	1	3	1	2	2	2	3	2	_

1: Slight (Low)

2: Moderate (Medium)

3: Substantial (High)

Assessment Guideline: Course coordinator will decide the suitable assessment method for internal evaluation for the course completion.

*Note: Provide detailed feedback on each experiment and overall performance, focusing on:

- Technical skills and proficiency.
- Creativity and problem-solving abilities.
- Communication and presentation skills.
- Collaboration and peer review contributions.

		Governme	nt College of Engineer	ing, Karad							
		Final Year (Sem	– VII) B. Tech. Electri	cal Engineering							
	Aud	it Course Lab I: E	EE2765: Foundation of	Electrical Vehicle	e Lab						
Laborator	y Scheme:			Examinat	ion Scheme:						
Practical		04 Hrs/week		ISE	-						
Total Credi		Audit Course		ESE	-						
	Prerequisite: Mathematics, Basic Programming skills										
Course Outcomes (CO): Students will be able to											
CO1 Perform experiments by interfacing sensor with microcontroller											
CO2			ramming for EV system								
CO3			ulink model for differe	nt EV units							
CO4	Design the	power supply EV	ourse Contents			CO					
Implement	tation of fall	owing concepts	ourse Contents			CO					
-											
Experimen			process of raspberry pi			CO1					
Experimen		•	ontrol the speed of dc mo	otor		CO1					
Experimen	nt 3 Interf	ace IR/ PIR sensor	with microcontroller			CO1					
Experimen	nt 4 Interf	ace ultrasonic sens	or with microcontroller a	and find distance		CO1					
Experimen	nt 5 Deve	loping SIMULINI	Models for Vehicle U	Inits		CO3					
Experimen	nt 6 Progr	amming EV Syster	ns in MATLAB			CO2					
Experimen	nt 7 Appli	cation of Data Ana	lysis Techniques in EV	Electrical system		CO2					
Experimen	nt 8 Desig	n a power supply u	nit and create a PCB des	sign for same.		CO4					
Experimen	nt 9 Mode	lling and simulatio	n of EV powertrain com	ponents in MATL	AB	CO3					
Experiment 10 Analysis of EV powertrain components in ANSYS CO3											
Experimen	nt 11 Batter	y Management Sy	stem modelling			CO3					
Experimen	nt 12 Mode	lling of Li-ion batt	ery pack using MATLA	B and ANSYS		CO3					
	List of Submission:										
Minimum	Minimum No. of Experiments: 10										

PO →	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2
CO 1	1	2	3	1	3	1	1	1	2	-	2	2	ı	1
CO 2	1	2	3	2	3	-	1	-	2	-	2	2	1	2
CO 3	1	2	3	3	3	-	1	-	2	-	2	2	-	1
CO 4	1	2	3	3	3	-	1	-	2	-	2	2	2	-

1: Slight (Low)

2: Moderate (Medium)

3: Substantial (High)

Assessment Guideline: Course coordinator will decide the suitable assessment method for internal evaluation for the course completion.

*Note: Provide detailed feedback on each experiment and overall performance, focusing on:

- Technical skills and proficiency.
- Creativity and problem-solving abilities.
- Communication and presentation skills.
- Collaboration and peer review contributions.

		Government Colleg	e of Engineering, l	Karad						
		Final Year (Sem – VII) B	. Tech. Electrical l	Engineering						
	Audit (Course Lab I: EE2775: Fu	ndamentals of Ima	age Processi	ng Lab					
Laboratory	y Scheme:			Examinatio	n Scheme:					
Practical		04 Hrs/week		ISE	-					
Total Credi	ts	Audit Course		ESE	-					
Prerequisit										
Course Outcomes (CO): Students will be able to										
CO1 Understand fundamentals of Image Processing Operations										
CO2		analyse rendering and visual		images						
CO3	•	f various transforms & signal								
CO4	Design and	l Evaluation of Various Class		nd segmentation	on techniques					
		Course Con	ntents			CO				
Implement	ation of fol	owing concepts								
Experimen		oling and Quantization operat		essing.		CO1				
Experimen	t 2 Data	Augmentation techniques for	Computer vision			CO1				
Experimen	t 3 Histo	ogram Analysis for Various m	edical analysis			CO1				
Experimen	t 4 App	y volume rendering and volume	me visualizing approa	aches on 2D/3	D Images	CO2				
Experimen	t 5 Visu	alize and explore 2D images a	and 3D volumes.			CO2				
Experimen	t 6 Impl	ement multi-resolution techni	ques on large-scale h	igh-resolution	images	CO2				
Experimen	t 7 EEG	brain signal analysis using w	avelet transform			CO3				
Experimen	t 8 ECC	heart signal enhancement				CO3				
Experimen	t 9 Brai	Tumor detection and classif	ication			CO3				
Experimen	Experiment 10 Fast Bilateral Filter – To eliminate the noise and smoothen the medical image CO4									
Experimen	t 11 CLA	HE – To improve the contras	t of the medical imag	e		CO4				
Experimen	t 12 Con	volutional Neural Network (C	NN) – To segment th	e tumor part		CO4				
List of Sub	mission:									
Minimum N	No. of Exper	iments:10								

$PO \rightarrow$	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2
CO↓														
CO 1	1	2	3	1	3	-	1	-	2	-	2	2	2	1
CO 2	1	2	3	2	3	-	1	-	2	-	2	2	1	2
CO 3	1	2	3	3	3	-	1	-	2	-	2	2	-	1
CO 4	1	2	3	3	3	-	1	-	2	-	2	2	1	1

1: Slight (Low)

2: Moderate (Medium)

3: Substantial (High)

Assessment Guideline: Course coordinator will decide the suitable assessment method for internal evaluation for the course completion.

*Note: Provide detailed feedback on each experiment and overall performance, focusing on:

- Technical skills and proficiency.
- Creativity and problem-solving abilities.
- Communication and presentation skills.
- Collaboration and peer review contributions.

Audit Course sem VIII

			Governmen	nt College of Engineering, l	Karad		
		Fi	inal Year (Sem -	- VIII) B. Tech. Electrical	Engineering		
	Audi	t Course	Lab II: EE281	1: Advanced AI Technique	s and Applicat	tions Lab	
Laborato	ory Sch	neme:			Examination S	Scheme:	
Practical			04 Hrs/week		ISE	-	
Total Cre	dits		Audit Course		ESE	-	
Prerequi	isite : N	Mathemat	ics, Basic Program	nming skills	l		
			Students will be a				
CO1				LP and Computer Vision to an	alyse and proces	s diverse data	types.
CO2	_ •			complex decision-making pro			
CO3				solutions ensuring ethical consi			
CO4				es for time series forecasting			
			nable AI methods.		1	•	
	I.	<u> </u>		Course Contents			CO
Impleme	ntatio	n of follo	wing concepts				ı
Experim			ed NLP Experim	ant			
Experim	ent 1		-	text classification model using	advanced NI D t	achniquae	CO1
				and pre-trained models from H		eciniques.	COI
Experim	ont 2		Classification with		ugging Pacc.		
Experim	ent 2			onvolutional neural network (C.	NN) for image cl	lassification	CO1
				a augmentation techniques to in			COI
Experim	ent 3		Detection and Seg	2	iiprove inoder pe	Tiormance.	
Experim	ciit 3			tection algorithms (e.g., YOLO	Faster R-CNN)	1	CO1
				entation using models like U-N			
Experim	ent 4		cement Learning	Ÿ	(Ot 01 1/14511 11 O1		
Laperini				reinforcement learning agent us	sing OpenAl Gyr	n	CO2
				Ferent RL algorithms like Q-lea			002
Experim	ent 5		s Process Automa		<i>g</i> F <i>g</i>	,	
	.0110			process using robotic process a	automation (RPA	(A) tools.	CO2
				arning models for intelligent de			
Experim	ent 6		y-Specific AI Sol		8		
•				maintenance model for manuf	acturing.		CO3
				etection system for financial tra			
Experim	ent 7		-Edge AI Resear				
_				ent in a cutting-edge AI researc	h area (e.g., GAl	Ns, BERT).	CO3
		• An	alyze and docume	ent the research findings and the	eir implications.		
Experim	ent 8			ing on Cloud Platforms			
				ted machine learning training p			CO2
				on and orchestration tools like	Docker and Kub	ernetes.	
Experim	ent 9			ment and Monitoring			
				arning model in a production en			CO2
				ols to track model performance	and detect anom	nalies.	
Experim	ent		and Fairness in A		10:		~~-
10			* *	cation for ethical consideration			CO3
T				ent measures to address identification	ied ethical conce	rns.	
Experim	ent			with Deep Learning		I C/D) #	004
11				ning model for time series fore	casting (e.g., usi	ng LSTM or	CO4
			RU).	anno with the dition of the con-	mod-1-		
E	4			nance with traditional time serie	es models.		
Experim	ent		able AI (XAI)	ility toohnigens (a.c. SIIAD I	IME) for a second	1 - 1 - 1 - 1	COA
12				pility techniques (e.g., SHAP, L ret the model's predictions			CO4
			atyze and interpretations.	ict the model's predictions	io chsule trans	parency and	
List of St	uhmico		stworumiess.				
List of S	uDIIIISS	1011;					

Minimum No. of Experiments: 10	

PO →	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2
CO↓														
CO 1	2	3	3	3	3	1	-	-	-	-	-	2	2	1
CO 2	2	2	2	2	3	2	-	-	2	2	2	2	1	2
CO 3	3	3	3	3	3	-	1	2	1	2	3	2	-	2
CO 4	2	3	2	3	3	2	2	2	2	2	1	2	1	1

1: Slight (Low)

2: Moderate (Medium)

3: Substantial (High)

Assessment Guideline: Course coordinator will decide the suitable assessment method for internal evaluation for the course completion.

*Note: Provide detailed feedback on each experiment and overall performance, focusing on:

- Technical skills and proficiency.
- Creativity and problem-solving abilities.
- Communication and presentation skills.
- Collaboration and peer review contributions.

			Governmer	nt College of Engineering	, Karad		
		F		- VIII) B. Tech. Electrica		ng	
		Audit (Course Lab II: E	EE2821: Advance AI and	IoT Integrat	tion Lab	
Laborato	ory Sch	eme:			Examinat	ion Scheme:	
Practical			04 Hrs/week		ISE	-	
Total Cre	dits		Audit Course		ESE	-	
Prerequi	site : N	l athemat	ics, Basic Program	nming skills			
Course C	Outcom	es (CO)	Students will be a	ible to			
CO1	Unde	rstanding	g AIoT Foundation	is.			
CO2	Apply	Hands-	on Implementation	n Skills.			
CO3	Analy	sis of Se	ensor Technologies	S.			
CO4	Desig	n and de	ploy Innovative So	olution.			
				Course Contents			CO
Impleme	ntatior	of follo	wing concepts				
Experime	ent 1	Explore	e various AI applic	cations across industries.			CO1
Experime				IoT in the modern interconn	ected world.		CO1
Experime				f AIoT and its potential impa			CO1
Experime				ateways in bridging mobile d		networks.	CO1
Experime				rcises for setting up an			CO1
1		connec					
Experime	nt 6	Conduc	ct a comprehensive	e overview of sensor technological	ogies used in I	oT.	CO3
Experime	nt 7	Perforn	n an in-depth exp	ploration of various types	of sensors and	d their academic	CO3
		underp	innings.	-			
Experime	ent 8		in practical demo plications in IoT sy	onstrations and experiments systems.	showcasing ser	nsor functionality	CO3
Experime	nt 9			c signal system for color	olind individu	als using AIoT	CO ₂
-		technol	logies.				
Experime	nt 10	Implen	nent an AIoT-base	d plant health analysis syster	n.		CO ₂
Experime		Create	a smart door acces	ss control system using AIoT	technologies.		CO ₂
Experime	nt 12	Design	and implement a	weather forecasting system u	sing AIoT tecl	nnologies.	CO ₂
Experime	ent 13	Integra predict		ther data from sensors wit	h AI algorith	ims for accurate	CO2
Experime	nt 14	Engage	in hands-on exer	cises for building, testing, a	nd refining we	eather forecasting	CO2
		system	S.				
Experime	nt 15	Develo	p and deploy smar	t solutions utilizing AIoT pr	inciples.		CO2
Experime	ent 16	•		eal-world examples of succe	ssful smart so	lutions in various	CO4
		domain					
Experime	ent 17	_		ed learning to conceptualize	e, design, and	implement AIoT	CO4
		solution	ns.				
List of Su							
Minimum	n No. o	f Experin	nents: 14				

Mapping of	r CUs a	na PUs												
PO →	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2
CO↓														
CO 1	3	3	2	2	2	1	-	-	-	2	-	2	2	1
CO 2	3	2	2	2	2	1	-	-	3	2	1	2	1	2
CO 3	2	2	3	2	2	-	1	1	3	2	-	2	1	1
CO 4	2	2	2	3	2	1	1	1	2	2	2	2	2	-

^{1:} Slight (Low)

Assessment Guideline: Course coordinator will decide the suitable assessment method for internal evaluation for the course completion

- Technical skills and proficiency.
- Creativity and problem-solving abilities.
- Communication and presentation skills.

^{2:} Moderate (Medium)

^{3:} Substantial (High)

^{*}Note: Provide detailed feedback on each experiment and overall performance, focusing on:

 Collaboration and peer review contributions. This approach ensures that students gain practical experience and valuable feedback, enhancing their learning without the pressure of formal exams.

			Governmer	t College of Engineering, Karad								
		Fi		- VIII) B. Tech. Electrical Engineering								
A	ndit (Advanced ARVR Techniques and Application	ns Lah							
Laborato			2av II. 1212/031.	Examination Schen								
Practical	ny ou	iciiic.	04 Hrs/week	ISE -	ш.,							
Total Cre	dits		Audit Course	ESE -								
		/lathemat	ics, Basic Program									
			Students will be	<u> </u>								
CO1				cations of Virtual Production Technique								
CO2				e Engine for Virtual Production								
CO3		,		d Design Principles for Virtual Environment								
CO4				tation Skills in Virtual Production Projects								
				Course Contents	C	0						
Impleme	ntatio	n of follo	wing concepts									
Experime	nt 1	Historia	ral Overview and	Evolution of Virtual Production								
Laperinic	/11t 1			historical overview of virtual production techniques								
			_	of virtual production in film, television, and other	· madia							
			stries.	or ration production in tilli, television, and other	CC	Э1						
				ons and benefits of virtual production in modern	media							
			luction.	mile continue of them production in modern								
Experime	ent 2			up and Operation								
1				tudios and their setup.		0.2						
		_	-	nes for green screen setups.	CC	<i>J</i> 3						
				studio to capture footage for virtual production.								
Experime	ent 3	_	ection to Unity Ga	<u> </u>								
•			Overview of Unity Game Engine and its features.									
			• Import assets into Unity for virtual production purposes.									
		_		nents within Unity for production purposes.								
Experime	ent 4		ne Rendering Te	<u> </u>								
=		• Und	erstand real-time r	endering and its importance in virtual production.		04						
				achieving realistic visuals in real-time environments	s. CC	<i>J</i> 4						
		•	•	ng capabilities for high-quality visual output.								
Experime	ent 5	Virtual	Set Design Princ	ples								
		• Stud	y virtual set design	principles and layout.	CC	7 2						
		• Desi	gn immersive virt	al environments for different production needs.		JS						
		• Inco	rporate props, set	dressing, and lighting to enhance realism and aesthet	ics.							
Experime	ent 6		ew of Virtual Can	•								
				ypes of virtual cameras and their functionalities.	. co	D3						
		• Und	erstand the import	ance of virtual cameras in scene composition and fra	ming.	JJ						
				operation within Unity for virtual production.								
Experime	ent 7	_	~ -	Virtual Production								
			•	g setups and their effects on virtual production.	CC	<u>)1</u>						
		_		as lighting techniques in a virtual environment.		71						
				ting to enhance the realism and aesthetics of virtual s	scenes.							
Experime	ent 8			nagement in Unity								
			_	r asset importation into Unity.	CC	Ω_2						
		_		Unity's project structure.		~ 						
-	_			nization techniques for efficient usage in virtual prod	uction.							
Experime	ent 9		g Virtual Enviro									
				and environment tools to build virtual landscapes.								
		_		nments with assets and objects.	CO) 2						
			•	erials, and effects to enhance the realism of	virtual							
		envi	ronments.									
Dressein	mt 10	D	al A	Vintual Duaduation Techniques								
Experime	ու 10			Virtual Production Techniques	cc and CC)4						
		• Plan	and execute a v	irtual production project using green screen studi	ios and							

Unity. • Incorporate elements of virtual set design, lighting, and camera composition. • Produce a final virtual production project demonstrating mastery of virtual production techniques.	
List of Submission:	
Minimum No. of Experiments:10	

PO →	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2
CO↓														
CO 1	2	2	2	2	2	1	1	-	2	1	1	1	-	1
CO 2	3	2	1	2	2	1	-	-	2	1	1	1	1	2
CO 3	2	2	2	2	2	1	-	-	2	1	1	2	-	1
CO 4	2	2	2	3	2	1	-	-	2	1	2	2	2	-

1: Slight (Low)

2: Moderate (Medium)

3: Substantial (High)

Assessment Guideline: Course coordinator will decide the suitable assessment method for internal evaluation for the course completion

*Note: Provide detailed feedback on each experiment and overall performance, focusing on:

- Technical skills and proficiency.
- Creativity and problem-solving abilities.
- Communication and presentation skills.
- Collaboration and peer review contributions.

	Government Colle	ge of Engineering, Karad		
		. Tech. Electrical Engine	ering	
	Audit Course Lab II : EE2841:			
Laboratory Schen	ne:	Exam	ination Scheme:	
Practical	4 Hrs/week	ISE	-	
Total Credits	Audit Course	ESE	-	
Prerequisite : Java	<u> </u>			
	(CO):Students will be able to			
	role and functionality of Eclipse in	<u> </u>		navigation
	BAP projects by creating, editing, an			
	AP code performance and quality u	sing static testing tools, AE	BAP Unit Tests,	and the ABAP
Profiler with				. 1 4040
	l implement advanced SAP appl		ynpro componei	nts and ABAP
Dictionary	Objects, utilizing Eclipse's developm Course Conte			CO
Experiment 1	Introduction to Eclipse, Underst		nco Installina	CO 1
Experiment 1	Eclipse Eclipse	COI		
Experiment 2	Defining an ABAP Project, Orga	se Workbench	CO 2	
Experiment 2	The ABAP Development Cycle i	CO 2		
Experiment 3	Creating Repository Objects, I		ct, Debugging	CO 2
•	ABAP in Eclipse.		, 22 2	
Experiment 4	Function Groups and Function M	lodules.		CO 2
Experiment 5	ABAP Dictionary Objects in Eclip	CO 4		
	With Structures, Modelling Views			
Experiment 6	ABAP Objects and Eclipse, Creati			CO 4
Experiment 7	Web Dynpro Development, Crea		nts	CO 4
Experiment 8	Navigating in Eclipse, Searching	in Eclipse		CO 1
Experiment 9	Managing Version Control, Ident	ifying Sources of Help and I	nformation	CO 1
Experiment 10	Testing and Analysis, Performing Performing Static Testing with the	2	Syntax Check,	CO 3
Experiment 11	Performing ABAP Unit Tests, Profiler.	CO 3		
Experiment 12	Eclipse: An Extensible Toolkit, with Other SAP Tools.	Functionality	CO 1	
List of Submission:				
Minimum No. of E	xperiments: 10			

PO	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2
\rightarrow														
CO↓														
CO1	3	2	-	-	2	-	-	-	2	2	-	1	3	1
CO2	3	1	3	2	2	-	-	-	2	2	-	1	2	-
CO3	3	3	3	3	2	-	-	1	3	3	-	1	1	-
CO4	3	2	3	3	3	1	1	1	3	3	1	1	1	2

1: Slight(Low)

2: Moderate(Medium)

3: Substantial(High)

Assessment Guideline: Course coordinator will decide the suitable assessment method for internal evaluation for the course completion

*Note: Provide detailed feedback on each experiment and overall performance, focusing on:

- Technical skills and proficiency.
- Creativity and problem-solving abilities.
- Communication and presentation skills.
- Collaboration and peer review contributions.

	Government College of Engineering, Karad											
Final Year (Sem – VIII) B. Tech. Electrical Engineering												
	Audit Course Lab II:EE2851: EV Design Analysis and simulation Lab											
Laboratory Scheme:			Examination Scheme:									
Practical	04 Hrs/week		ISE									
Total Credits	Audit Course		ESE									
Prerequisite: Basic Electrical Engineering												
Course Outcomes (CO):	Students will be able	e to										

CO1	Demonstrate various softwares needed for analysis and simulation
CO2	Design 3D mesh of EV components
CO3	Analysis 3D data with different simulation softwares
CO4	Thermal analysis of battery components

	Course Contents	СО
Experiment 1	Introduction to ANSYS	CO1
Experiment 2	Mesh model development using Hyper mesh- 2D	CO1
Experiment 3	Mesh model development using Hyper mesh- 3D	CO2
Experiment 4	Modelling and simulation of EV powertrain components in MATLAB	CO2
Experiment 5	3D modelling of EV powertrain components in ANSYS	CO3
Experiment 6	Simulation of EV powertrain components in ANSYS	CO2
Experiment 7	EV design and structural analysis:	CO2
Experiment 8	FEA analysis for EV engineering with Abaqus	CO2
Experiment 9	Analyze EV dynamic and simulation:	CO1
Experiment 10	CFD analysis for EV	CO3
Experiment 11	Thermal Analysis of Liquid-Cooled Radiator in ANSYS	CO3
Experiment 12	CFD Study of External Cooling Mechanism	CO4
List of Submission:		

Minimum No. of Experiments: 10

۲r	ing or cos	, and I	06.												
	PO →	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO 12	PSO1	PSO2
	CO↓	1	2	3	4	5	6	7	8	9	10	11			
	CO1	2	2	1	2	2	1	2	1	2	1	1	2	2	2
	CO2	3	2	1	3	2	2	2	1	1	1	1	2	-	1
	CO3	2	3	3	3	3	1	3	2	2	2	2	3	-	-
	CO4	3	3	3	3	3	1	3	1	2	2	2	3	1	2

1: Slight (Low)

2: Moderate (Medium)

3: Substantial (High)

Assessment Guideline: Course coordinator will decide the suitable assessment method for internal evaluation for the course completion

*Note: Provide detailed feedback on each experiment and overall performance, focusing on:

- Technical skills and proficiency.
- Creativity and problem-solving abilities.
- Communication and presentation skills.
- Collaboration and peer review contributions.

			Governmen	nt College of E	ngineering,	Karad					
		Fi	inal Year (Sem -								
		Audit	Course Lab II:	EE2861:: Adv	anced Electi	rical Vehicle L	ab				
Laboratory	y Scher	ne:				Examination	Scheme:				
Practical			04 Hrs/week			ISE	-				
Total Credit	ts		Audit Course			ESE	-				
Prerequisite: Mathematics, Basic Programming skills											
	Course Outcomes (CO): Students will be able to										
			sics of Various co			n					
			ry controller, cell								
			d control operation			on					
CO4	Design	and Si	mulate Electric Ve		•						
				Course Content	S			CO			
Implement	tation o	of follo	wing concepts								
Experimen	nt 1		lation of SPW LAB/Simulation.	M technique	for electric	vehicle conv	verter using	CO1			
Experimen	nt 2	Simulation of three phase VSI for grid integration in EV using MATLAB/Simulation									
Experimen	nt 3	Design of bidirectional battery circuit using Buck/Boost converter using MATLAB/simulation.									
Experimen	nt 4		ry controller base MATLAB Simul		charging and c	lischarging of b	attery in EV	CO2			
Experimen	nt 5		elling and Simulation.	ation of BMS	for passive of	cell balancing i	n EV using	CO2			
Experimen	ıt 6	SoC	control of Lithium	Ion battery in M	ATLAB/ Sim	ulink for EV		CO2			
Experimen	Experiment 7 Simulation of bidirectional operation in Electric Vehicle Charger using single phase model.										
Experimen	nt 8	Mode	elling and simulati	on to calculate e	electric vehicle	speed from mote	or torque.	CO3			
Experimen							•	Co4			
Experiment 9Speed control of electric vehicle using BLDC or PMSM in MATLAB/Simulink.CoExperiment 10Simulation of electric vehicle using MATLAB/Simulink.CO											
List of Sub	missio	n:						-			
Minimum N	No. of I	Experin	nents:10								

mapping of	L COS a	nu i Os												
$PO \rightarrow$	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2
CO↓														
CO 1	1	2	3	1	3	1	1	-	2	-	2	2	2	2
CO 2	1	2	3	2	3	-	1	-	2	-	2	2	-	1
CO 3	1	2	3	3	3	-	1	-	2	-	2	2	-	-
CO 4	1	2	3	3	3	-	1	-	2	-	2	2	1	2

1: Slight (Low)

2: Moderate (Medium)

3: Substantial (High)

Assessment Guideline: Course coordinator will decide the suitable assessment method for internal evaluation for the course completion

- Technical skills and proficiency.
- Creativity and problem-solving abilities.
- Communication and presentation skills.
- Collaboration and peer review contributions.

^{*}Note: Provide detailed feedback on each experiment and overall performance, focusing on:

		Governmen	nt College of Engineering	, Karad						
Final Year (Sem – VIII) B. Tech. Electrical Engineering										
	Audit	Course Lab II:	EE2871: Advanced Ima	ge Processing	g Lab					
Laboratory	Scheme:			Examination Scheme:						
Practical		04 Hrs/week		ISE	-					
Total Credits	S	Audit Course		ESE	-					
Prerequisite: Image Processing										
Course Outcomes (CO): Students will be able to										
		Support Vector Machine for image classification.								
		late image enhancement and restoration techniques								
		ning image compression Techniques								
CO4 Implementing image segmentation Techniques and Object recognition.										
Course Contents										
Implementa	tion of follo	wing concepts								
Experiment	Suppo	Support Vector Machine (SVM) – To classify the cancer tumor								
Experiment	2 Auton	Automated Segmentation and analysis of skeletal structure images and scans								
Experiment		Classifying and locating morphological patterns in an automatic way (on CT and radiographs)								
Experiment	4 Brain	Brain tumor and also tissue segmentation								
Experiment		e and also gender classification using Brain MRI								
Experiment	6 Comp	Computer aided diagnosis using Mammography								
Experiment	Lung o	Lung cancer detection using medical image processing								
Experiment		Kidney stone detection using medical image processing								
Experiment		Study of color image compressing using image processing								
Experiment	10 Skin c	Skin cancer detection								
List of Submission:										
Minimum No	o. of Experin	nents:10								

Wiapping of COs and TOs														
PO →	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2
CO↓														
CO 1	1	2	3	1	3	1	1	-	2	-	2	2	1	-
CO 2	1	2	3	2	3	-	1	-	2	-	2	2	-	1
CO 3	1	2	3	3	3	-	1	-	2	-	2	2	-	-
CO 4	1	2	3	3	3	-	1	-	2	-	2	2	2	1

1: Slight (Low)

2: Moderate (Medium)

3: Substantial (High)

Assessment Guideline: Course coordinator will decide the suitable assessment method for internal evaluation for the course completion

*Note: Provide detailed feedback on each experiment and overall performance, focusing on:

- Technical skills and proficiency.
- Creativity and problem-solving abilities.
- Communication and presentation skills.
- Collaboration and peer review contributions.