(An Autonomous Institute of Government of Maharashtra)

DEPARTMENT OF MECHANICAL ENGINEERING

PROPOSED SCHEME OF INSTRUCTION FOR <u>ADDITIONAL CREDIT COURSES (Offline Mode)</u> (Honours, Honours with Research and Double Minor)

AS PER NEP-2020

W.E.F AY 2024-25

(An Autonomous Institute of Government of Maharashtra)

DEPARTMENT OF MECHANICAL ENGINEERING

INSTITUTE VISION

To emerge as a technical Institute of national repute driven by excellence in imparting value based education and innovation

in research to face the Global needs of profession.

INSTITUTE MISSION

To create professionally competent engineers driven with the sense of responsibility towards nature and society.

DEPARTMENT VISION

"Be a nationally recognized mechanical engineering department that provides right academic ambience and nurtures innate

talent of students"

DEPARTMENT MISSION

"Prepare engineering students for successful career by imparting knowledge, skills & right attitude."

(An Autonomous Institute of Government of Maharashtra)

DEPARTMENT OF MECHANICAL ENGINEERING

PROGRAMME EDUCATIONAL OBJECTIVES (PEO)

PEO1	Solve problems related with mechanical engineering using knowledge of mathematics, basic sciences, mechanical and relevant engineering disciplines and skills developed during graduation studies
PEO2	Demonstrate an understanding about selected specific areas of mechanical engineering as a critical step in career development
PEO3	Function and communicate effectively, both individually and with multidisciplinary teams using professional ethics, social awareness and environmental concern
PEO4	Engage in lifelong learning for successful adaptation to technological changes due to research

PROGRAMME SPECIFIC OUTCOMES (PSO)

PSO1	Able to exhibit skills to cater industry requirements
PSO2	Able to create a knowledge through project based learning
PSO3	Able to excel in multidisciplinary environment.

(An Autonomous Institute of Government of Maharashtra)

DEPARTMENT OF MECHANICAL ENGINEERING

PROGRAMME OUTCOMES (PO)

PO1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to
101	the solution of complex engineering problems.
POI	Problem analysis: Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated
102	conclusions using first principles of mathematics, natural sciences, and engineering sciences.
	Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that
PO3	meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental
	considerations.
DO 4	Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments,
PO4	analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
DO5	Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction
P05	and modelling to complex engineering activities with an understanding of the limitations
	The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural
PU6	issues and the consequent responsibilities relevant to the professional engineering practice.
DO7	Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts,
rU/	and demonstrate the knowledge of, and need for sustainable development.
PO8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
DOO	Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary
P09	settings.
	Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large,
PO10	such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive
	clear instructions.
DO11	Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply
PUII	these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
DO12	Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the
ruiz	broadest context of technological change.

Scheme of Instructions for

'Honors'

Offline Mode

PROPOSED SCHEME OF INSTRUCTION

Programme: B.Tech Mechanical Honors (Industrial Product Design) (wef 2024-25)

Guidelines

Students will take up 5-6 additional courses in the same Engineering/ Technology discipline of 18 credits distributed over semester III –VIII. These 18 credits will be over and above the 176 credits prescribed for four year Multidisciplinary Bachelor's degree in Engg/Tech Program.

Minor:	<u>Semester – I</u>	(Major:	Semester – IV))

Sr.	Course Code	Course Title	L	Р	Contact	Course	EXAM SCHEME		
No.	Course Coue	course rule		•	Hrs/Wk	Credits	FA	SA	TOTAL
1	MEHO-0401	Fundamentals of Product design and process	03		03	03	20	30	50
2	MEHO-0402	Product design techniques lab		02	02	01	-	50	50
		Total	03	02	05	04	20	80	100

Minor: Semester – II (Major: Semester – V)

Sr.	Course Code	Course Title	L	Р	Contact	Course	EXAM SCHEME		
No.	course coue			Hrs/Wk	Credits	FA	SA	TOTAL	
1	MEHO-0501	Product packaging and Materials	03		03	03	20	30	50
2	MEHO-0502	Product packaging CAD lab		02	02	01		50	50
		Total	03	02	05	04	20	80	100

L-Lecture

P-Practical

FA-I- Formative Assessment

SA - Summative Assessment (For Laboratory End Semester performance)

PROPOSED SCHEME OF INSTRUCTION

Programme: B.Tech Mechanical Honors (Industrial Product Design)

Minor: Semester – III (Major: Semester – VI)

Sr.	Course	Course Title	L	Р	Contact	Course	EXAM SCHEME		
No.	Code	Course The			Hrs/Wk	Credits	FA	SA	TOTAL
1	MEHO-0601	Product Ergonomics	03		03	03	20	30	50
2	MEHO-0602	Design for medical and agriculture applications lab		02	02	01		50	50
		Total	03	02	05	04	20	80	100

Minor: Semester – IV (Major: Semester – VII)

Sr.	Course	Course Title	L	Р	Contact	Course	EXAM SCHEME		
No.	Code			•	Hrs/Wk	Credits	FA	SA	TOTAL
1	MEHO-0701	Product estimation and costing	02		02	02	20	30	50
2	MEHO-0702	Prototyping Techniques lab		02	02	01		50	50
		Total	02	02	04	03	20	80	100

L-Lecture

P-Practical

FA- Formative Assessment-

SA - Summative Assessment (For Laboratory End Semester performance)

PROPOSED SCHEME OF INSTRUCTION

Programme: B.Tech Mechanical Honors (Industrial Product Design)

Minor: Semester – V (Major: Semester – VIII)

Sr. No.	Course Code	Course Title	т	Р	Contact Hrs/Wk	Course Credits	EXAM SCHEME		
			L				PBE-I	PBE-II	TOTAL
1	MEHO-0801	Major Capstone Project (Design & Development)		6	6	3	50	50	100
		Total		6	6	3	50	50	100

L- Lecture P-Practical SA - Summative Assessment (For Laboratory End Semester performance) PBE-I– Project-based Examination (For Laboratory Mid Semester Performance) PBE- II Project-based Examination (For Laboratory End Semester Performance)

PROGRESSIVE TOTAL CREDITS: 18

Scheme of Instructions for

Honors with Research

Offline Mode

Government College of Engineering, Karad PROPOSED SCHEME OF INSTRUCTION

Programme: B.Tech Mechanical Honors with Research (wef 2026-27)

Guidelines

Students will work on research project for 18 credits in the semester VII –VIII in the respective Major Engineering/Technology discipline. These 18 credits will be over and above the 176 credits prescribed for four year multidisciplinary bachelor's degree in Engg/Tech Program.

Minor: Semester – I (Major: Semester – VI	I)
---	----

Sr.	Course Code	Course Title	L	Р	Contact Hrs/Wk	Course Credits	EXAM SCHEME		
No.							PBE-I	PBE-II	TOTAL
1	MEHRO-0701	Research Project Phase -I		18	18	09	100	100	200
		Total		18	18	09	100	100	200

Minor: Semester - II (Major: Semester - VIII)

Sr.	Course Code	Course Title	L	Р	Contact Hrs/Wk	Course Credits	EXAM SCHEME		
No.							PBE-I	PBE-II	TOTAL
1	MEHRO-0801	Research Project Phase -II		18	18	09	100	100	200
		Total		18	18	09	100	100	200

L- LectureP-PracticalFA-I- Formative Assessment-IFA-II- Formative Assessment-IISA - Summative Assessment (For Laboratory End Semest= performance)PBE-I- Project-based Examination (For Laboratory Mid Semester Performance)

PBE- II Project-based Examination (For Laboratory End Semester Performance)

PROGRESSIVE TOTAL CREDITS: 18

Scheme of Instructions for

'Double Minor'

Offline Mode

PROPOSED SCHEME OF INSTRUCTION

Programme: B.Tech Mechanical with Double Minors (wef 2024-25)

Guidelines

Students will take up 5-6 additional courses in another Engineering/ Technology/ Emerging Area of Specialization of 18 credit distributed over semester III – VIII. These 18 credits will be over and above the 176 credits prescribed for four year multidisciplinary bachelor's degree in Engg/Tech Program

Sr.	r. Course Code	Course Title	L	Р	Contact	Course	EXAM SCHEME			
No.					Hrs/Wk	Credits	FA	SA	TOTAL	
1	MEDO-0301	Material Science	02		02	02	50	50	100	
		Total	02	00	02	02	50	50	100	

Minor: Semester – I (Major: Semester – III)

Minor: Semester – II (Major: Semester – IV)

Sr.	Sr. No. Course Code	Course Title	L	Р	Contact	Course	EXAM SCHEME			
No.			-		Hrs/Wk	Credits	FA	SA	TOTAL	
1	MEDO-0401	Analysis of Mechanical elements	02		02	02	50	50	100	
		Total	02	00	02	02	50	50	100	

L-Lecture

P-Practical

FA- Formative Assessment-I

SA - Summative Assessment (For Laboratory End Semester performance)

Government College of Engineering, Karad PROPOSED SCHEME OF INSTRUCTION <u>Programme: Double Minors</u>

Sr.	Course Code	Course Title	L	Р	Contact	Course	EXAM SCHEME			
No.	No.		-	-	Hrs/Wk	Credits	FA	SA	TOTAL	
1	MEDO-0501	Thermal Engineering	03		03	03	50	50	100	
2	MEDO-0502	Mechanical Engineering Lab		02	02	01	50		50	
		Total	03	02	05	04	100	50	150	

Minor: Semester – III (Major: Semester – V)

Minor: Semester - IV (Major: Semester - VI)

Sr.	Course Code	Course Title	т	р	Contact	Course	EXAM SCHEME				
No.	No. Course Code		L	r	Hrs/Wk	Credits	FA	SA	TOTAL		
1	MEDO-0601	Manufacturing Engineering	02		02	02	50	50	100		
		Total	02	00	02	02	50	50	100		

Government College of Engineering, Karad PROPOSED SCHEME OF INSTRUCTION <u>Programme: Double Minors</u>

<u>Minor: Semester – V (Major: Semester – VII)</u>

Sr.	Course Code	Course Title	т	р	Contact	Course	EXAM SCHEME			
No.	No. Course Code	Course Thie		r	Hrs/Wk	Credits	FA	SA	TOTAL	
1	MEDO-0701	Energy Conservation and Management	02		02	02	50	50	100	
		Total	02	00	02	02	50	50	100	

Minor: Semester – V (Major: Semester – VIII)

Sr.	Course Code	Course Title	т	D	Contact	Course	E	EXAM SCHEME			
No.	Course Code	Course The	L	ſ	Hrs/Wk	Credits	PBE-I	PBE-II	TOTAL		
1	MEDO-0801	Mechanical System Design	2		2	2	50	50	100		
2	MEDO-0802	Major Capstone Project (Design & Development)		8	8	4	50	50	100		
		Total	2	8	10	6	100	100	200		

L-Lecture

P-Practical

SA - Summative Assessment (For Laboratory End Semester performance)

PBE-I- Project-based Examination (For Laboratory Mid Semester Performance)

PBE- II Project-based Examination (For Laboratory End Semester Performance)

PROGRESSIVE TOTAL CREDITS: 18

			Government College of	Engineerir	ng, Karad									
		Program	ne: B.Tech Mechanical Ho	nors (Indu	strial Product Des	ign)								
		MEH	O-401 : Fundamentals of	Product de	esign and process									
Tea	ching Scho	eme			Examination Sche	me								
Lect	ures	03 Hrs/week			FA	20								
Tuto	orials	00 Hrs/week			SA	30								
Tota	l Credits	03			ESE	60								
					Duration of ESE	02 Hrs	30 Min							
Prei	requisite: .	Any department	enthusiast interested to Product	t design.										
Cou	rse Outco	mes (CO): Stude	ents will be able to											
CC	D1 Deve	lop logical and c	reative thinking for the solutio	ns of Produc	t Design.									
CC	2 Conc	eptualize produc	ts by understanding various Tr	ends.										
CC	3 Imple	ement deep knov	ledge of Product Design, Tech	nnology in th	e industries									
CC	14 Inher	it, analyse and s	olve various kinds of existing p	problems and	create solution									
			Course Conter	nts			CO	Hours						
Uni	t 1 Indu	strial Design Pı	inciples				CO1	(08)						
	Desi	gn principles like	e functionality, innovation aestl	hetics, simple	icity etc.									
Uni	t 2 Elen	nents of design:					CO2	(07)						
	Unde	erstanding differe	ent elements of design such as s	symmetry, co	ontinuity, contrast,									
	balar	ice, emphasis, pr	oportion, hierarchy, repetition,	rhythm, pat	tern, white space,									
	Mov	ement, variety, u	nity etc. Concept of visual lang	guage and vis	sual design, Gestalt									
	Laws	s, composition ai	id figure and ground relationsh	ips. Introduc	tion to concept of									
	Nega	Negative space, Color circle, hue and saturation. Color in traditions and												
T T •	Inter	Interpretation of colors												
Uni	Con Moth	ceptualization a	na lacation:	tophore incr	insticut		02	(05)						
	Brain	storming session	as etc. Introduction to 2 dimension	sional and 3	dimensional form									
	Radi	i manipulation ir	2D and 3D form Exploration	of surface te	extures in different									
	Mate	rials Expression	s in Form like soft hard warm	of sufface to	se gross delicate									
	stror	ng fragile rugge	l etc	i, cola, preer	se, 21055, deficate,									
Uni	t 4 Desig	on for manufact	uring and assembly:				CO2	(07)						
0111	Diffe	erent aspects of n	nodular designs in interior and	exterior of v	ehicle by		001	()						
	unde	rstand user need	ls, Product Prototyping techni	ques, Under	standing different w	ays of								
	platf	orm sharing to i	ncrease the variants as perma	arket needs,	benefits and limitation	ons of								
	platf	orm sharing etc.	-											
Uni	t 5 CAD) in product des	ign				CO2,	(06)						
	Unde	erstanding impor	tance of CAD can help to faster	r design itera	ations, improve		CO3							
	accur	racy, efficiency,	increase productivity etc.											
Uni	t 6 Prod	luct Planning ar	nd Marketing:				CO4	(07)						
	Proce	ess of making b	usiness plans, different market	ting methods	s, product launch ide	ation								
	and	executions, Des	sign feasibility, Selection of	off the she	elf parts, product de	esign								
	valid	ation, design for	manufacturing, product plann	ing, segment	selection, product d	esign								
	plan,	product specific	ation, product development me	ethods, proto	typing methods.									
Refe	erence Boo	oks			I 77 1 1									
1.	Rockport	Strial Design Ref Publishers, 15 S	erence & Specification Book: I ept 2013	Dan Cuttaro,	Isaac Zaksenberg									
2.	The Aesth	netics of Industri	al Design: Seeing, Designing a	nd Making:	Richard Harriot									
Use	ful Links													
1.	https://d	ribbble.com/tags	/product-design	I										
2.	https://9	9designs.com/in	spiration/websites/product-desi	ign										
3	www.beh	ance.net/		0 -										
~•														

Mapping of COs and POs

$PO \rightarrow$	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
CO↓												
CO 1	1	2	3	-	-	-	-	-	-	-	-	2
CO 2	2	3	1	2	3	1	-	-	1	1	-	2
CO 3	2	2	3	2	3	1	1	-	2	1	-	2
CO 4	3	1	2	3	-	2	2	1	2	1	3	3
1: Sligl	nt(Low	r)		2: Mo	derate(N	ledium)		3: Sut	ostantial	(High)		

Assessment Pattern (with revised Bloom's Taxonomy)

Knowledge Level	MSE	ISE	ESE
Remember			
Understand	4	4	10
Apply	4	4	10
Analyse	4	4	10
Evaluate	4	4	10
Create	4	4	20
TOTAL	20	20	60

	Government College of Engineering, Karad										
	<u>Pr</u>	rogr	amme: B.Tech	Mechanical Honors (Indu	<u>istrial Prod</u>	luct]	<u>Design)</u>				
			MEHO	0-402 : Product design tec	chniques						
Laboratory	y Scheme	:			Examina	tion	Scheme:				
Practical			02 Hrs/week		FA		-				
Total Credit	ts		01		SA		50				
Prerequisit	Prerequisite : Any department enthusiast willing to learn vehicle design.										
Course Ou	tcomes (<u>CO):</u>	Students will be a	ible to							
CO1	Develop	p log	ical and creative the	hinking for the solutions of P	roduct Desig	n.					
CO2	Develop	p an	understanding of v	various Trend Analysis & Pro	oduct Concep	otualiz	zation				
CO3	Implem	ent k	nowledge of Prod	luct Design, material & Tech	nology in the	indu	stries				
CO4	Create S	Solut	ion by understand	ing and analyzing problem.				1			
			С	ourse Contents				CO			
Implement	ation of f	follo	wing concepts								
Experimen	t 1	Indu	strial design princ	iples				C01			
Experimen	t 2	Cond	ceptualization and	Ideation				CO2			
Experimen	it 3	Elen	nents of design					CO2			
Experimen	t 4	Desi	gn semantics					CO3			
Experimen	t 5	Desi	gn methodology					CO3			
Experimen	t 6	Logi	cal thinking for cr	reative solutions				CO3			
Experimen	t 7	Und	erstanding design	Languages				CO3			
Experimen	it 8	Forn	ns and functions					CO3			
Experimen	it 9	Impo	ortance of CAD in	product design				CO4			
Experimen	t 10	Desi	gn for manufactur	ring and assembly				CO4			
Experimen	t 11	Prote	otyping methods					CO4			
Experimen	t 12	Rede	esigning technique	es				CO4			
List of Sub	mission:							•			
		Mini	imum number of E	Experiments : 10							

Mapping of COs and POs

$PO \rightarrow$	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
CO↓												
CO 1	3	1	2	1	-	1	1	-	1	-	-	2
CO 2	1	2	2	1	-	1	1	-	1	-	-	2
CO 3	1	2	3	2	-	1	-	-	1	-	-	2
CO 4	2	3	2	3	3	1	1	-	1	-	-	2
1: Sli	ght (Lov	v)		2: Mo	derate (1	Medium	a) 3: Substantial (High)					

Assessment Pattern:

Skill Level (as per	Exp	Avg									
CAS Sheet)	1	2	3	4	5	6	7	8	9	10	
Task I	30	30	30	30	30	30	30	30	30	30	30
Task II	10	10	10	10	10	10	10	10	10	10	10
Task III	10	10	10	10	10	10	10	10	10	10	10

	Government College of Engineering, Karad										
Programme: B.Tech Mechanical with Double Minors											
MEDO 0301: (MDM D- Material Science											
Teaching	Schom	0				Examination Scho	mo				
Locturos	Schen	02 Hrs/week				MSE	20				
Tutoriala		02 1115/ WCCK					20				
Tutoriais	1.4	-		20							
Total Cre	dits	02				ESE	60	20 . M.			
						Duration of ESE	02 Hr	s 30 Min			
Pre-Requ	isite: N										
Course O	utcom	es: students will	be able to -								
CO1	Under	rstand basic of s	solidification	different types of nu	cleation, coo	ling curve and draw	phase	diagram	S		
CO2	Comp	brehend the kno	wledge abou	ferrous, non-ferrous	metal and the	eir heat treatment pr	ocess				
CO3	Outlin	ne and appreciat	e the advance	ments in materials er	ngineering rel	lated to composites,	ceram	ics, and p	olastics		
CO4	Analy	ze and select m	aterials for sp	ecific applications.							
				Course Content	ts			CO	Hours		
Unit 1	Intro	duction to Mat	erial Scienc								
	Meta	llic and Non-r	netallic mat	rials and its classi	fication(meta	ls/allovs polymers	and				
	comr	osites) Crystal	systems			ille, allo je, poljilore	unu				
	a) Ty	mes of Dislocati	ons: Slin Sv	tems [.] Plastic Deform	nation by Sli	n and Twinning in s	ingle	CO1	(5)		
	cryst	al and polyery	stalline ma	erial Strain harder	ning Cold y	working Recovery	and	001	(0)		
	Recr	vstallization		••••••		, origing, 10000, org					
	(b) So	lid solutions and	l intermediat	nhases. Gibbs phase	e rule						
Unit 2	Engi	neering Materi	ale	phases, croos phase	e ruie						
Onic 2	Ferr	ous materials	a15								
	Intro	duction to Fe-Fe	3C equilibriu	m diagram Steel Pl	ain carbons s	teel Allov steel					
	a) Fre	e cutting steels	HSLA high	carbon low alloy stee	els Maraging	steels Creen resisti	nø	CO2	(4)		
	a) free cutting steels, fish a fight calcold fow alloy steels, Maraging steels, Creep resisting (U) (4) steels steels steels different types Tool steels types HSS										
	b) Sn	b) Specifications based on -IS BS SAE AISI									
	Cast Irons Classification properties and production process										
Unit 3	Non formous motorials										
Omt 5	Study of non-ferrous materials								(4)		
Unit 4	Prine	rinles of heat tr	eatment								
Cint I	TTT	Diagram and (CT -Diagran	ns -significance							
	a) He	eat treatment of	f steels					CO2	(4)		
	b) H	eat treatment o	f Non-ferroi	s Allovs							
Unit 5	Adv	nce Materials		5111035							
Cint C	Com	nosite material	-Introductio	to Composite Class	sification of c	composites.					
	. Mec	chanical properti	es of compos	ites		, omposites,					
	Bio-	Materials:-Cla	sses of mate	rials used in medic	ine and Ap	plication of materia	als in				
	medi	cine	sses of max	indis discu in incure.	ine ,una rip			CO3	(5)		
	Smai	rt materials [.] - (classification	specific types · S	Shape Memo	orv Allovs Piezoel	ectric				
	Mate	rials. Magnetos	strictive Mat	erials. Magneto-Rhe	eological Flu	ids. Electro-Rheolo	ogical				
	Fluid	s				, Information	0				
Unit 6	Pron	$\frac{1}{2}$ erties of mater	ials and its s	ection							
0	Prop	erties of mater	ials :-Mecha	nical Properties. Elec	ctrical proper	rties. Thermal prope	erties.				
	Mag	netic properties.	Optical prop	erties.	FF	,	,	~~ (
	Mate	erial selection for	or engineeri	g Materials				CO4	(4)		
	Exploring materials using materials property charts Materials selection process.										
	Translation, Screening, Ranking, Selecting materials: materials indices. Case studies										
Assignme	nt:- As	signment based	Selection of	material for specific a	application	,					
Text Bool	KS I I I	6			TT THINK			I	1		
1.	V.D.	Kodgire, "Mater	ial science a	d metallurgy for eng	ineers" Ever	est Publishers Pune	44 th 20)18			
2	WD	Callister "Mate	rial science	nd engineering" Wil	lev India Pvt	Ltd. 5 th Edition	, 20				
3	TV	Raian / C P Sh	arma "Heat	Treatments Principle	es and Practi	ces" Prentice Hall	of Ind	ia Pvt I	td New		
5.	Delhi		umu, mai	reaction in the pr	es unu i laeti		or mu	ing i vi L			
Reference		2									
1	R A 1	, Higging "Engin	eering Matal	uray" Viva Rooks D	wt I the New	Delhi 1 st Edition					
1.	K.A.	Aunor "Introdes	tion to physic	al matallumar" Mar	$\frac{1}{10000000000000000000000000000000000$	k Company Inc. 2nd	adition	a (1 Inter	2017)		
∠.	р э.п. /	-vnei, introduc	non to physi	ai metanurgy, Mcg	зіам ПІІІ В ОС	K Company Inc, 2	cultion	i (i july	2017)		

3.	Michael F. Ashby "Materials Selection in Mechanical Design" Fourth Edition • 2011 Butterworth-Heinemann
	publication
4.	D. S. Clark, W. R. Varney, "Physical Metallurgy for Engineers", AN East West Press Pvt. Ltd., New Delhi, 2 nd
	Edition,1962
5.	V Raghwan, "Material Science and Engineering", Prentice Hall of India Pvt. Ltd., New Delhi ,6 th Edition, 2015.
6.	J L Smith and SC Bhatia, "Heat Treatment of Metals", CBS Publishers and distributors, New Delhi, 1 st edition,
	2008.
Useful Li	nks
1.	https://archive.nptel.ac.in/courses/113/102/113102080/
2.	https://archive.nptel.ac.in/courses/112/108/112108150/

Mapping of COs and POs:

$PO \rightarrow$	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO	PO	PO	PSO	PSO	PSO
CO↓										10	11	12	1	2	3
CO 1	2	2	1	1	-	-	-	-	-	-	-	2	2	-	-
CO 2	1	1	-	-	-	-	-	-	-	-	-	-	3	-	1
CO 3	2	2	1	1	-	-	-	-	-	-	-	2	1	-	2
CO 4	2	2	1	-	-	-	-	-	-	-	-	2	3	-	2

Assessment Pattern (with revised Bloom's Taxonomy)

Knowledge Level	MSE	ISE	ESE		
Remember	5	4	10		
Understand	-	4	10		
Apply	5	4	15		
Analyse	5	4	10		
Evaluate	5	4	15		
Create	-	-	-		
TOTAL	20	20	60		

Government College of Engineering, Karad												
Second Year (Sem – IV) Mechanical Engineering Minor												
MEDO-0401 (DM-II): Analysis of Mechanical Elements (MDM-2)												
Teach	ning S	chem	e		Examin	ation Scheme						
Lectu	res		02 Hrs/week		MSE 20							
Tutor	rials		-		ISE		20					
Total	Cred	its	02		ESE							
	Duration of ESE 02 Hrs											
Pre-R	Pre-Requisite: Nil											
Cours	se Ou	tcome	es: students will	be able to -								
CO1	Und	erstan	d basic requirer	ments for design of components.								
CO2	Und	erstan	d failure criteria	a for given machine element.								
<u>CO3</u>	Eval	lute B	ending and shea	ar stresses in beams subjected to differen	t loadings	for different ma	chine p	barts				
<u>CO4</u>	Ana	lyse st	tress and strains	s in various machine elements such as sir	nple mach	ine components	, beams	s, shafts e	tc.			
				Course Contents				CO	Houng			
Unit	+ 1	Over	view of Design	Course Contents					nours			
Om	. 1	Salac	tion of materia	ls Design Process Evolution of des	ion desig	n criteria Conc	urrant	CO1	(04)			
		desig	n	its, Design Trocess, Evolution of des	igii uesigi	ii cintena, Cone	unent		(04)			
Unit	t 2	Defoi	rmation in Soli	ds and Principal Stresses								
Cint		Conce	ept of stress and	1 strain- tension, compression and shear	stresses. H	looke's law. Poi	sson's					
		ratio	elastic constar	nts and their relations- volumetric line	ear and sh	near strains- pri	ncipal	CO3,4	(05)			
		stress	es		und bi	iour strains pri	noipui					
Unit	13	Intro	duction to Stre	25565								
Cint		SFD.	BMD. Bending	g. Shear. Torsional stresses				CO3,4	(04)			
Unit	+ 4	Prod	uct life cycle	,,,,								
Cint		Produ	ict design Prod	uct development life cycle learning from	n failures			CO4	(04)			
Unit	5	Ergo	nomics	det development me cycle, learning nor	ii fuffufes.							
e int		Introd	fuction and Ove	erview of Freenomics. Tools and technic	wes for Er	ronomics		CO1	(04)			
		muot		i view of Eigonomies, 10015 and teening		gonomies			(0.)			
Unit	t 6	Failu	re Analysis									
		Case	studies-failure a	analysis of mechanical components, Fore	ensic analy	vsis		CO4	(05)			
				× *								
Text]	Books											
1.	Ger	e and	Timoshenko, "	Mechanics of Materials", CBS Publica	tions, 2 nd	edition, 2008.						
2. S. S. Rattan - Strength of Materials. Tata Mcgraw Hill. 2 nd edition. 2016.												
3. Rattan, Ramamurtham, "A Textbook of Strength of Materials". Laxmi Publications. 6 th edition. 2017												
Refer	Reference Books											
1.	Ferd	linand	Beer, Jr., E. F	Russell Johnston, John DeWolf, David	Mazurek	- Mechanics of	Materi	ials-McG	raw-Hill			
	Education, 9 th edition, 2014											
2.	2. Mott Robert L, Applied Strength of Materials, 4th edition, 2006											
Usefu	l Linl	ks										
1.	https	s://npt	el.ac.in/courses	/112107147								
2.	https://onlinecourses.nptel.ac.in/noc23_ce80/preview											

Mapping of COs and POs:

	$PO \rightarrow$	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
	CO↓															
	CO 1	2	-	-	-	-	-	-	-	-	-	-	1	1	-	1
	CO 2	2	-	-	2	-	-	-	-	-	-	-	2	1	-	1
	CO 3	1	2	1	3	-	-	-	-	-	-	-	1	1	-	2
ſ	CO 4	2	1	2	3	-	-	-	-	-	-	-	1	1	-	2

1: Slight (Low)

2: Moderate (Medium)

3: Substantial (High)

Assessment Pattern (with revised Bloom's Taxonomy)

Knowledge Level	MSE	ISE	ESE		
Remember	-	4	10		
Understand	5	4	10		
Apply	5	4	15		
Analyse	5	4	10		
Evaluate	5	4	15		
Create	-	-	-		
TOTAL	20	20	60		