Government College of Engineering, Karad

PROPOSED SCHEME OF INSTRUCTION

Programme: Honors and Multidisciplinary Minor (Embedded Systems)

Minor: Semester – I (Major: Semester – IV)

Sr.	Course Code	Course Title	т	Р	Contact	Course	EXAM SCHEME			
No.	Course Coue	course rule	Ľ	1	Hrs/Wk	Credits	FA	SA	TOTAL	
1	EXHO-0401	System Design using Embedded Processors	03		03	03	20	30	50	
2	EXHO-0402	Competency Lab- I		02	02	01		50	50	
		Total	03	02	05	04	20	80	100	

Minor: Semester - II (Major: Semester - V)

Sr.	Course Code	de Course Title I		р	Contact	Course	EX	XAM SCHE	ME
No.	Course Coue	Course Thie	L	ſ	Hrs/Wk	Credits	FA	SA	TOTAL
1	EXHO-0501	Embedded Programming	03		03	03	20	30	50
2	EXHO-0502	Competency Lab- II		02	02	01	-	50	50
		Total	03	02	05	04	20	80	100

Minor: Semester -III(Major: Semester - VI)

Sr.	Course Code	Course Title	т	р	Contact	Course	EXAM SCHEME			
No.	Course Coue	Course Thie	L	Г	Hrs/Wk	Credits	FA	SA	TOTAL	
1	EXHO -0601	Design of Digital Signal Processing System	03		03	03	20	30	50	
2	EXHO -0602	Competency Lab- III		02	02	01		50	50	
		Total	03	02	05	04	20	80	100	

Minor: Semester - IV(Major: Semester - VII)

Sr.	Course Code	Course Title	т	Р	Contact	Course	EXAM SCHEME			
No.	Course Code	Course Thie	L	Г	Hrs/Wk	Credits	PBE-I	PBE-II	TOTAL	
3	EXHO-0701	Professional Training & Mini- Project-I		06	06	03	50	50	100	
		Total	00	06	06	03	50	50	100	

Minor: Semester - IV (Major: Semester - VIII)

Sr.	Course	Course Title	т	D	Contact	Course	EX	EXAM SCHEME			
No.	Code	Course fille	L	1	Hrs/Wk	Credits	PBE-I	PBE-II	TOTAL		
1	EXHO -0801	Major Capstone Project (Design&Development)		6	06	03	50	50	100		
		Total		06	06	03	50	50	100		

L- Lecture	P-Practical
FA- Formative Assessment	SA - Summative Assessment (For Laboratory End
Semester performance)	
PBE-I– Project-based Examination (For I	Laboratory Mid Semester Performance)
PBE- II Project-based Examination (For	Laboratory End Semester Performance)

PROGRESSIVE TOTAL CREDITS: 18

Guidelines:-Students will take up 5-6 addittional course in the same Engineering/ Technology discipline of 18 credit distributed over semester III –VIII. These 18 credits will be over and above the 176 credits prescribed for four year multidisciplinary bachelor's degree in Engg/Tech Program.

Government College of Engineering, Karad PROPOSED SCHEME OF INSTRUCTION

Programme: Honors with Research and Multidisciplinary Minor

Minor: Semester – IV(Major: Semester – VII)

Sr.	Course	Course Title	т	D	Contact	Course	EXAM SCHEME			
No.	Code	Course Thie	L	1	Hrs/Wk	Credits	PBE-I	PBE-II	TOTAL	
3	EXHRO- 0701	Research Project Phase -I		18	18	09	100	100	200	
		Total		18	18	09	100	100	200	

Minor: Semester – IV (Major: Semester – VIII)

Sr.	Course	Course Title	т	D	Contact	Course	EX	KAM SCHE	ME
No.	Code	Course The	L	Г	Hrs/Wk	Credits	PBE-I	PBE-II	TOTAL
1	EXHRO - 0801	Research Project Phase -II		18	18	09	100	100	200
		Total		18	18	09	100	100	200

L- Lecture

P-Practical

FA- Formative Assessment Semester performance) SA - Summative Assessment (For Laboratory End

PBE-I- Project-based Examination (For Laboratory Mid Semester Performance)

PBE- II Project-based Examination (For Laboratory End Semester Performance)

PROGRESSIVE TOTAL CREDITS: 18

Guidelines:-Students will work on research project for 18 credits in the semester VII –VIII in the respective Major Engineering/Tecnology discipline. These 18 credits will be over and above the 176 credits prescribed for four year multidisciplinary bachelor's degree in Engg/Tech Program.

Government College of Engineering, Karad PROPOSED SCHEME OF INSTRUCTION

Programme: Double Minors (Multidisciplinary and Specialization Minors)

			(M	ajor:	Sen	nester –	· III)					
Sr.	Course	Course Title	т	р	C	ontact	Cou	rse		EXAN	M SCHEM	E
No.	Code	Course The	L	r	H	rs/Wk	Cre	dits	FA	4	SA	TOTAL
1	EXDO-0301	Electronic Circuits	02			02	02	2	50	0	50	100
		Total	02			02	02	2	5(0	50	100
			(M	lajor:	Ser	nester –	- IV))				
Sr.	Commo Codo	Commo Title	т	п	(Contact	Co	ourse		EXA	M SCHEN	/IE
No.	Course Code	Course Thie	L	P]	Hrs/Wk	Cr	edits	J	FA	SA	TOTAL
1	EXDO-0401	Digital Electronics	02			02		02		50	50	100
		Total	02			02		02		50	50	100
(Major: Semester – V)												
Sr.	Course Code	Course Title	Т	Г)	Contac	t C	Course	e EXAM SCHEME			ME
No.	Course Coue	Course Thie	L			Hrs/Wl	C C	redits		FA	SA	TOTAL
1	EXDO-0501	Signals & Systems	03		-	03		03		50	50	100
2	EXDO -0502	Signals & Systems Laboratory		0	2	02	01			50	-	50
		Total	03	0	2	05		04		100	50	150
			(M	ajor: 3	Sen	nester –	VI)					1
Sr.	~ ~ ~ .					Contac	t C	Course		EX	AM SCHE	ME
No.	Course Code	Course Title			,	Hrs/Wl	c C	redits		FA	SA	TOTAL
1	EXDO-0601	Communication System	02		-	02		02		50	50	100
		Total	02		-	02		02		50	50	100
			(Ma	ajor: S	Sem	nester –	VII)				
Sr.						Contac	t C	Course	e EXAM SCHEM			ME
No.	Course Code	Course Title	L	ŀ	,	Hrs/Wl	c C	redits		FA	SA	TOTAL
1	EXDO-0701	Microprocessor & Microcontroller	02		-	02		02		50	50	100
		Total	02		-	02		02		50	50	100
			(Ma	jor: S	lem	ester –	VIII)				
Sr. No	Course Code	Course Title	I	- 	Р	Con	tact /Wk	Cour Credi	se its	EX PRF_I	XAM SCH	EME
1	EXDO -0801	Mobile Communication	0	2		0	$\frac{1}{2}$ 0			50	50	101AL
2	EXDO -0802	Major Capstone Project (Design& Development)	-	-	08	0	8	04		50	50	100
	Total		-	-	08	1	0	06		100	100	200
L- I	Lecture					P-Prac	tical					

FA- Formative Assessment SA - Summative Assessment (For Laboratory End Semester performance)

PBE-I- Project-based Examination (For Laboratory Mid Semester Performance)

PBE- II Project-based Examination (For Laboratory End Semester Performance)

PROGRESSIVE TOTAL CREDITS: 18

Guidelines:-Students will take up 5-6 addittional courses in another Engineering/ Technology/ Emerging Area of Specialization of 18 credit distributed over semester III –VIII. These 18 credits will be over and above the 176 credits prescribed for four year multidisciplinary bachelor's degree in Engg/Tech Program.

	Government College of Engineering, Karad								
		Programm	Double Minors (Multi	disciplinary and	d Specialization Mi	nors)			
			EXDO-0301:]	Electronic Circ	cuits				
Teachir	ng Sche	eme			Examination Scher	me			
Lectures	5	02 Hrs/week			MSE	20			
Tutorial	S	00 Hrs/week			ISE	20			
Total Ci	edits	02			ESE	60			
					Duration of ESE	02 Hrs	s 30 Min		
Prerequ	iisite: S	Semiconductor p	ysics, P-N Junction Diod	e					
Course	Outco	mes (CO):Stude	ts will be able to						
CO1	Ident	ify and different	te between various speci	al purpose diodes	s and bipolar junction	transis	tors (BJT] s),	
	inclu	ding their struct	es, working principles, a	nd applications.					
CO2	Analy	yze and evaluate	lifterent biasing configur	ations and stabili	zation techniques use	ed in tra	nsistor ci	rcuits.	
<u>CO3</u>	Appl	y and demonstra	e graphical analysis techn	iques for various	FET configurations.	1 4		•	
CO4	Creat	e small-signal	odels for various biasir	ig configurations	s and transistor type	sand A	nalyze ti	ransistor	
	ampli	ifters using h pa	meters				CO	TT	
Unit 1	Diad	ag and DIT.	Course Co	ontents				Hours	
Unit I	Struc	ture working ar	applications of Special r	urnose diodes (S	Schottky barrier yara	rtor	COI	4	
	diode	s Solar cells pl	todiodes I CDs and Tun	nel diodes)	schouky barrier, varag	.101			
	BJT:	Types, structur	operation and character	istics. CE. CB.	and CC configuration	ns of			
	BBJT		operation and enalacted						
Unit 2	Tran	sistor Biasing:					CO2	4	
	Opera	ating Point, con	ept of a.c and d.c load l	ines, Need for E	Bias Stabilization, Bia	asing			
	Confi	igurations: Fixe	Bias, Collector-to-Base	Bias, Bias Circ	uit with Emitter Res	istor,			
	Volta	ge Divider Bias	ig, Emitter Bias, Bias Sta	bility, Stability F	Factor.				
Unit 3	Low	frequency anal	sis of Transistor:				CO4	5	
	Grap	hical analysis c	the CE configuration.	Two port device	es and the Hybrid N	Aodel,			
	Trans	sistor Hybrid Mo	lel, h parameters, Analys	is of transistor an	nplifier using h Paran	neters,			
TI:4 A	Emitt	er follower.					CO4	1	
Unit 4	I ran	sistor at High I	equency:	Justanas Unbrid	- annasitanas Vali	lity of	C04	4	
	Hybr	id $-\pi$ CE Hallshid $-\pi$ model var	tion of Hybrid -π parame	ters CE short ci	-n capacitance, vand	uity of			
Unit 5	Field	Effect Transis	r:	ters, CL short en	leun eurient gam		CO3	5	
cint c	Struc	ture types and w	rking of FET and MOSE	ET. CS. CG and	CD configurations of	f FET.	000	L.	
	Fixed	l-Bias Configur	ion, Self-Bias Configur	ation, Voltage-E	Divider Biasing, Con	nmon-			
	Gate	Configuration			Ċ,				
Unit 6	FET	Amplifiers:					CO2	5	
	JFET	Small-Signal M	odel for Fixed-Bias Conf	iguration, Self-B	ias Configuration, Vo	oltage-			
	Divid	ler Biasing, O	ommon-Gate Configura	ation, Source-F	ollower (Common-	Drain)			
	Confi	iguration							
Text Bo	oks	· · · ·			NT 1 1 1 11/1 11/	. 20	1.7		
1. "	Electron	nic devices and	rcuit theory" - Robert L.	Boylestad, Louis	S Nashelsky, 11th edit	$\frac{100}{200}$	15	7	
2. J.	Millim	an & C. Haikias	Electronic devices & cir	cuits", Tata McC	raw Hill Publication.	. 3 ^{.a} Edi	tion, 200	1	
Referen	Electron	KS nic Circuit Anal	vis and Design" Donald	A Noomon Toto	McGrow Hill 2nd Ed	lition 2	002		
1. 2 "	Flectro	nic devices" The	nas I Floyd — Pearson	A. Incallell, Tala	$\frac{1}{100}$ tion 2012	ntioli, 2	002		
2 . 3 "1	Flectro	nic Devices and	$\frac{1}{1}$ ircuits" by David A Ref	1 OXFORD 5 th	Edition 2008				
J. Useful I	links		nound by David A. Del		2000				
1. h	ttps://ar	chive.nptel ac in	courses/108/108/108108	112/ Semiconduc	tor devices and circuit	its/ Prof	Saniiv		
	amband	lan. IISc Bangal	re.	Senneonaue	the need and enfou		. Sunji v		

PO	PO	PO	PO 3	PO 4	PO 5	PO 6	PO 6	PO 8	PO 9	PO	PO	PO	PSO	PSO	PSO
\rightarrow	1	2								10	11	12	1	2	3
CO↓															
CO 1	1	1	3	-	2	-	-	-	-	-	-	-	-	2	-
CO 2	-	3	2	1	1	-	-	I	-	-	-	-	1	-	-
CO 3	1	3	3	-	2	1	-	I	-	-	-	-	2	-	-
CO 4	1	3	2	-	1	-	-	I	-	-	-	-	2	-	-
1: Slight(Low) 2: Moderate(Medium) 3: Substantial(High)															

Knowledge Level	MSE	ISE	ESE
Remember	5	5	-
Understand	5	5	25
Apply	5	5	20
Analyse	5	5	15
Evaluate	-	-	-
Create	-	-	-
TOTAL	20	20	60

			Government College of Engi	ineering, Karad			
		Programme	e: Double Minors (Multidisciplina	ary and Specialization N	(finors)		
			EXDO-0401:Digital E	lectronics			
Teachin	ng Schem	ne		Examination Scl	neme		
Lectures	s (02Hrs/week		MSE	20		
Tutorial	s (00 Hrs/week		ISE	20		
Total Cr	redits (02		ESE	60		
				Duration of ESE	02 Hr	s 30 Min	
Prerequ	uisite: Ba	asic Electronics	s, Mathematics.				
Course	Outcom	es (CO):Stude	ents will be able to				
<u>CO1</u>	Unders	tand Basic Dig	gital Logic and Boolean Concepts.				
CO2	Analyz	e, design and i	implement combinational circuits.				
<u>CO3</u>	Analyz	e, design and f					
004	Design	basic electron	ics circuits for various applications			CO	Harris
TI:4 1	Numb	on Systems	Course Contents				Hours (05)
Unit I	Numbe	er System (Bir	hary Decimal Octal and Hevadeci	mal) Number Base Com	version	COI	(03)
	Arithm	etic operation	Complements of Number	mar), Number Dase Con	crision,		
Unit 2	Boolea	n Algebra and	d logic gates			CO1	(04)
01110 -	Basic I	Definition, logi	ic operation, Axioms and laws of Bo	olean Algebra, De Morga	ı's	001	()
	Theore	m, Reducing E	Boolean Expression, Digital logic ga	tes.			
Unit 3	Simpli	fication of Bo	olean Functions:			CO1	(05)
	Introdu	ction, The Ma	ap method, Two, Three and Four-V	ariable K-Map, Product	of Sum		
	and Su	m of Product, 1	NAND and NOR implementation, D	Oon't-Care conditions.			
Unit 4	Combi	inational Logi	c:		_	CO2	(04)
	Introdu	iction, Half A	dder, Full Adder, Half Subtractor,	Full Subtractor, Multiple	exer, De		
TT •4 7	Multip	lexer, Encoder	and Decoder.			CON	(05)
Unit 5	Sequer	ntial Logic:	and between Sequential and Combin	ational Latabas Elin Flor	o. DC	003	(05)
	IK T a	and D. Triggeri	ing of flip flops. Operating Character	ristic of FF Excitation tab	s. KS, le and		
	Equation	on	ing of mp nops, operating character				
Unit 6	Regist	ers and Count	ters:			CO4	(05)
01110	Registe	ers: SISO, SIPC	D, PISO, PIPO, Universal Shift Regis	ter			
	Counte	ers: Asynchrono	ous and Synchronous Counter with st	ate transition diagram, Up	Down,		
	Applica	ation of Sequer	ntial Circuit: Ring Counter, Johnson (Counter.			
	Note:I	SE will be con	ducted on the basis of understanding	g, design assignment and			
	present	tation on the fo	ollowing topics which will be studied	l by students themselves.	6 511		
	Code C	Converters (bin	ary-grey & grey-binary, Magnitude	Comparator, Conversion	of Flip		
Toxt Bo	Flops, l	MOD N counte	er, Custoimzable Digital Circuits.				
$1 \qquad A$	Anand	Kumar "Fund	amentals of digital circuits" PHI put	blication 1 st edition 2001			
1. A	P Jain '	"Modern Digit	tal Electronics". Tata McGraw - Hill	Education 4th edition 20	010		
2. Referen	ice Book	s			10.		
1. A	nil K. M	aini, "Digital E	Electronics principles and Integrated	Circuits", Wiley Publicati	ons. 1 st ec	lition, 20	07.
2. D	onald P.	Leach / Albert	t Paul Melvino/Gautam Saha, "Digit	al Principles and Applicat	ions", The	e McGrav	w Hill,
	ight Edit	10n (2015).	Wenned "England to the D'	al Lagia Dagian	N 22		
3. S	tephen B MH (200	rown & Zvonk)9).	to vranesic, "Fundamentals of Digit	ai Logic Design with VHI	JL ⁷ , Seco	na Editic	on,

Use	ful Links			
1.	https://onlinecourses.nptel.ac.in/noc21_ee39/preview, Prof. N	Veeraj G	oel IIT Ropar	
2.	https://nptel.ac.in/courses/117105080, Prof. D. Roy Choudhu	ıry IIT K	haragpur	

$PO \rightarrow$	PO	PSO	PSO	PSO											
CO↓	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	1	-	-	-	-	-	-	-	1	1	-	1	1	1	2
CO 2	2	2	2	2	3	-	-	-	-	-	-	2	2	2	3
CO 3	3	3	3	3	3	-	-	-	1	2	-	-	2	2	2
CO 4	2	2	3	-	3	-	-	-	1	-	-	-	2	2	2

1: Slight(Low)

2: Moderate(Medium)

3: Substantial(High)

Knowledge Level	MSE	ISE	ESE
Remember	5	5	10
Understand	5	5	20
Apply	5	5	10
Analyse	5	5	20
Evaluate	-	-	-
Create	-	-	-
TOTAL	20	20	60

			Gove	ernment Col	llege of Engine	eering, Karad			
		Program	mme: Hor	nors and Mult	tidisciplinary M	inor (Embedded	d Systems)		
		EX	HO-040	1: System I	Design using E	mbedded Pro	ocessor		
Teachin	g Sche	me				Examina	tion Scheme		
Lectures		03 Hrs/week				FA	20		
Tutorials	5	00 Hrs/week				SA	30		
Total Cr	edits	03							
Prerequ	isite : 1	Knowledge of D	Digital ele	ctronics, Mici	rocontroller Arc	hitecture and P	rogramming		
Course	Outcor	nes (CO):Stude	ents will b	be able to					
CO1	Under	rstanding of Em	bedded S	ystems.					
CO2	Abilit	y to Design and	l Optimize	e ARM-based	l Systems				
CO3	Apply applic	knowledge of ations,	Cortex-N	13 architectur	e in designing, o	leveloping, and	l debugging eml	bedded syst	ems
CO4	Hands	s-on experience	using var	rious develop	ment and debug	ging tools,			
				Course	e Contents			CO	Hours
Unit 1	Embe	edded Concept	s:					CO1	(07)
	Introc	luction to embe	edded sys	stems, Applic	ation Areas, Ca	tegories of em	bedded system	8,	
	Overv	view of embedd	ed system	architecture,	, Specialties of e	mbedded syste	ms, recent trenc	S	
	in em	bedded systems	s, Archite	cture of embe	mounication	Hardware archi	tecture, Softwai	e d	
	debug	ging Tools	Lation S	ontware, Co	mmumcation	Software, De	evelopment an	u	
Unit 2	ARM	Architecture:						CO2	(06)
	Backs	ground of ARM	Architec	ture, Archited	cture Versions,	Processor Nat	ming, Instructio	n	(00)
	Set D	evelopment, Th	umb-2 an	d Instruction	Set Architecture	e.Parameters.	8,		
Unit 3	Over	view of Cortex-	-M4:					CO3	(08)
	Corte	ex-M4 Basics: H	Registers,	General Purp	oose Registers, S	tack Pointer, L	ink Register,		
	Progr	am Counter, Sp	ecial Reg	isters, Operat	ion Mode, Exce	ptions and Inter	rrupts, Vector		
	Table	s, Stack Memor	ry Operati	ions, Reset Se	quence.				
	Instr	uction Sets: As	sembly B	asics, Instruc	tion List, Instru	Diagram Bug	ons.		
	Corte	x-M4 Inpleme x-M4 I-Code B	entation Rus D ₋ Co	de Bus Syste	m Bus Externa	Diagraili, Dus	P Rus		
	Excel	ntions. Excenti	ion Type	s Priority V	ector Tables In	terrunt Inputs	and Pending		
	Behay	vior Fault Exce	entions Si	pervisor Call	and Pendable S	ervice Call	and I chang		
	NVIC	C: Nested Vecto	ored Interr	upt Controlle	r Overview. Bas	sic Interrupt Co	nfiguration.		
	Softw	are Interrupts a	nd SYST	ICK Timer.			8,		
	Inter	rupt Behavior:	Interrupt/	Exception Se	quences, Except	tion Exits, Nest	ed Interrupts,		
	Tail-C	Chaining Interru	ipts, Late	Arrivals and	Interrupt Latence	y	1		
Unit 4	Corte		nming		•	2		CO3	(08)
	Corte	x-M4 Program	nming: ()	verview Tvn	ical Developme	nt Flow Using	C CMSIS		
	(Corte	ex Microcontrol	ller Softw	are Interface	Standard) Usin	g Assembly	, e,endibib		
	Excei	otion Program	ming: Us	sing Interrupt	s Exception/Int	errupt Handler	s Software		
	Interr	upts. Vector Tal	ble Reloc	ation.	s, Enception in	en apt manufer	s, soltware		
	Mem	orv Protection	Unit and	l other Corte	x-M4 features:	MPU Registers	s. Setting p the		
	MPU	Power Manage	ement. Mi	ultiprocessor	Communication		, 28 F		
Unit 5	Cont	v_M/ Mioroco	ntrollor			-		CO4	(07)
	STM	321.15xxx APN	A Cortev	M4 Microco	ntroller. Memo	ry and Rus Are	hitecture		
	Down	" Control Docod	t and Class	le Control			mucture,		
	rowe	r Control, Keset		CK CONTROL	~ ~ ~	a			
	STM	32L15xxx Peri	pherals:	GPIOs, Syste	m Configuration	n Controller, N	VIC, ADC,		

	Comparators, GP Timers, USART.		
Un	it 6 Development & Debugging Tools:	CO4	(06)
	Software and Hardware tools like Cross Assembler, Compiler, Debugger, Simulator, In-		
	Circuit Emulator (ICE), Logic Analyzer etc.		
Tex	t Books		
1.	Dr. K.V.K Prasad, "Embedded/Real Time Systems Concepts, Design and Programming Blac Dream Tech Press, New Edition - 1 January 2003.	k Book",	
2.	David Seal "ARM Architecture Reference Manual", Addison Wesley, England; Morgan Kaufmar Publishers, 2001	nn	
3.	Andrew N Sloss, Dominic Symes, Chris Wright, "ARM System Developer's Guide -Designing a	nd	
	Optimizing System Software", Elsevier. 2006,		
4.	The Definitive Guide to the ARM Cortex-M4, Joseph Yiu, ElsevierInc. Second Edition, 2010		
Ref	erence Books		
1.	Steve Furber, "ARM System-on-Chip Architecture", Pearson Education 2 nd Edition, 2001		
2.	Arnold. S. Berger, "Embedded Systems Design - An introduction to Processes, Tools	and	
	Techniques", Easwer Press, 2001.		
3.	Cortex-M series-ARM Reference Manual, 2 Mar 2010		
4.	ARM Company Ltd. "ARM Architecture Reference Manual- ARM DDI 0100E"		
Use	ful Links		
1.	https://archive.nptel.ac.in/courses/106/105/106105193/ EMBEDDED SYSTEM DESIGN WITINDRANIL SENGUPTA/IIT Kharagpur	TH ARM	/PROF.
2.	https://elearn.nptel.ac.in/shop/iit-workshops/completed/lab-workshop-on-embedded-c-and-arm-co	ortex-	
	microcontrollers-2/		

PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
\rightarrow	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO															
\downarrow															
CO	1	-	3	-	2	-	-	-	-	-	-	1	-	2	
1															
CO	2	3	1	-	-	-	-	-	-	3	-	2	-	2	3
2															
CO	3	2	3	-	-	-	-	-	2	-	-	2	-	2	3
3															
CO	3	1	2	3	-	-	-	-	2	-	-	-	-	2	2
4															
1: Slight	t(Low)		2:1	Moder	ate(Me	edium)		3:	Substa	antial(I	High)				

Knowledge Level	MSE	ISE	ESE
Remember	5	5	10
Understand	5	5	20
Apply	5	5	10
Analyse	5	5	20
Evaluate	-	-	-
Create	_	-	-
TOTAL	20	20	60

			Governn	ent College of Engineering	, Karad		
		Pro	gramme: Honors	and Multidisciplinary Minor (E	Embedded Syster	ns)	
	E	CXHC)-0402 :System	Design using Embedded Pr	ocessors Labo	ratory	
Laboratory	Schem	e:			Examination S	Scheme:	
Practical			02 Hrs/week		SA	50	
Total Credit	ts		01				
Prerequisit	e :						
Course Out	tcomes	(CO):	Students will be a	able to			
CO1	Develo	op the	ability to write e	efficient and optimized assemb	ly code to perfo	orm arithme	etic operations,
	data m	anipu	lation, and control	flow.			
CO2	Acquir	e pra	actical skills in	developing embedded syster	ns applications	using AI	RM Cortex-M
	microc	contro	llers.				
CO3	Unders	stand	various communi	cation protocols such as pollin	ig and interrupt-	driven met	hods for serial
	commu	unicat	ion with periphera	lls.			
CO4	Learn	princi	ples and technique	es for designing and implement	ting real-time da	ta acquisiti	on and control
	system	IS.					
			С	ourse Contents			CO
Implement	ation of	follo	wing concepts				
Experimen	t 1	Wı	ite a program to a	dd two 32- bit numbers stored i	n r0 and r1 regis	sters and	CO1
				write the result to r2.			
Experimen	t 2	Writ	e a program to m	ultiply two 16-bit numbers sto	ored in r0 and r1	registers	CO1
		and	write the result to	r3. Put 0xFFFFFFFF and 0x800	000000		
Experimen	t 3	Writ	e ARM assembly	y to perform function of divi	ision.Registers 1	1 and r2	CO1
		conta	ains the divident a	and divisor,r3 contains the quo	ptient, and r5 co	ntains the	
		rema	under.				
Experimen	t 4	Writ	e ARM assem	bly to perform following	array assign	ment in	CO1
		C:fo	r(i=0;i<=10;i++)	a[i]=b[i]+c;}			
Experimen	t 5	Writ	e a program to to	oggle green LED (portB.6) and	d Blue LED (po	ortB.7) on	CO2
		STM	I32L- Discovery b	y configuring GPIO and using	software delay.		
Experimen	t 6	Tran	smit a string "Pro	gramming with ARM Cortex"	to PC by config	guring the	CO2
		regis	ters of USART3.	Use polling method.			
Experimen	t 7	Writ	e a program to	toggle the LEDs at the rate	of 1 sec using	standard	CO2
		perip	oheral.				
Experimen	t 8	Tran	smit a data to F	PC by using standard periphe	rals with USA	RT1. Use	CO3
		inter	rupts method.				
Experimen	t 9	Rece	vive a data sent by	y PC by using standard periph	erals with USA	RT1. Use	CO3
		inter	rupts method.				
Experimen	t 10	Writ	e a program to rea	ad the analog input connected t	o ADC and com	pare with	CO4
		thres	hold so as to contr	rol the digital output(LEDs) use	e standard periph	erals.	
Experimen	t 11	Desi	gn of a real-t	time data acquistion& con	trol system u	sing the	CO4
		STM	132LxxARM Corte	exM4 Microcontroller.			
List of Sub	mission	:					
		Mini	mum number of E	Experiments : 10			

$PO \rightarrow$	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
CO↓															
CO 1	3	1	-	-	1	-	-	-	-	-	-	2	2	-	2
CO 2	3	2	-	-	2	2	-	-	2	-	-	2	3	2	3
CO 3	3	2	3	2	3	-	-	-	1	-	-	3	-	2	3
CO 4	3	2	3	-	3	2	-	-	-	-	2	2	-	3	3

1: Slight(Low)

2: Moderate (Medium)

3: Substantial (High)

Assessment Pattern:

Skill Level (as per	Exp	Avg									
CAS Sheet)	1	2	3	4	5	6	7	8	9	10	
Task I	15	15	15	15	15	15	15	15	15	15	15
Task II	05	05	05	05	05	05	05	05	05	05	05
Task III	05	05	05	05	05	05	05	05	05	05	05
ISE	25	25	25	25	25	25	25	25	25	25	25

Teachin		Government Conege of Engineering, Karau		
Teachin	Programme:	Double Minors (Multidisciplinary and Specialization Minors)		
Teachir Lectures	0	EXDO 0401 : Analog Communication		
Lectures	ng Scheme	Examination Scheme		
Lectures	s 03 Hrs/week	FA 20		
Tutorial	s 00 Hrs/week	SA 30		
Total	03	TOTAL 50		
Credits				
Prerequ	uisite :Signals and syst	tem, Mathematics.		
Course	Outcomes (CO): Stud	dents will be able to		
CO1	Describe the various	elements of communication system.		
CO2	Analyze the perform	ance of different analog modulation methods		
	Anaryze the performa	ance of uniferent analog modulation methods.		
CO3	Illustrate generation a	and detection of amplitude and frequency modulated systems.		
CO4	Characterize pulse m	odulation techniques.		
ļļ	Commo Contonti		CO	II
TT 14 1	Course Contents	······································		Hours (08)
Unit I	channels noise sour	nication systems: information sources, communication		(00)
	trade off	ces of noises, need for modulation, bandwidth and power		
Unit 2	Amplitude Medule	tion and domodulation. Amplitude Modulation: Types of	CO2	(07)
Unit 2	Amplitude Modulation	Principles of Amplitude Modulation AM for a Complex	02	(0)
	Modulating Signal	A Power Distribution AM Current Distribution Limitations		
	of AM. AM modu	lators and Demodulator Types of AM. Modulation &		
	Demodulation Techr	iques: DSB-SC, SSB-SC, Comparison of AM, DSBSC and		
	CCD			
	33D.			
Unit 3	Angle modulation	and demodulation: Frequency Modulation: Principles of	CO3	(05)
Unit 3	Angle modulation Angle Modulation, 7	and demodulation: Frequency Modulation: Principles of Theory of FM— Basic Concepts, Spectrum Analysis of FM	CO3	(05)
Unit 3	Angle modulation Angle Modulation, 7 Wave, Narrowband a	and demodulation: Frequency Modulation: Principles of Theory of FM— Basic Concepts, Spectrum Analysis of FM and Wideband FM, Noise triangle, Pre-emphasis, de-emphasis	CO3	(05)
Unit 3	Angle modulation Angle Modulation, T Wave, Narrowband a FM Generation: Dire	and demodulation: Frequency Modulation: Principles of Theory of FM— Basic Concepts, Spectrum Analysis of FM and Wideband FM, Noise triangle, Pre-emphasis, de-emphasis ect methods and Indirect method, FM Detection: Frequency	CO3	(05)
Unit 3	Angle modulation Angle Modulation, 7 Wave, Narrowband a FM Generation: Dire discriminator and P	and demodulation: Frequency Modulation: Principles of Theory of FM— Basic Concepts, Spectrum Analysis of FM and Wideband FM, Noise triangle, Pre-emphasis, de-emphasis ect methods and Indirect method, FM Detection: Frequency hase discriminator methods. Phase Modulation: Theory of	CO3	(05)
Unit 3	Angle modulation Angle Modulation, 7 Wave, Narrowband a FM Generation: Dire discriminator and P Phase Modulation,	and demodulation: Frequency Modulation: Principles of Theory of FM— Basic Concepts, Spectrum Analysis of FM and Wideband FM, Noise triangle, Pre-emphasis, de-emphasis ect methods and Indirect method, FM Detection: Frequency hase discriminator methods. Phase Modulation: Theory of Relationship between FM and PM, Advantages and	CO3	(05)
Unit 3	Angle modulation Angle Modulation, 7 Wave, Narrowband a FM Generation: Dire discriminator and P Phase Modulation, Disadvantages of An	and demodulation: Frequency Modulation: Principles of Theory of FM— Basic Concepts, Spectrum Analysis of FM and Wideband FM, Noise triangle, Pre-emphasis, de-emphasis ect methods and Indirect method, FM Detection: Frequency hase discriminator methods. Phase Modulation: Theory of Relationship between FM and PM, Advantages and gle Modulation, Comparison of AM, FM and PM.	CO3	(05)
Unit 3 Unit 4	Angle modulation Angle Modulation, 7 Wave, Narrowband a FM Generation: Dir discriminator and P Phase Modulation, Disadvantages of An Radio Transmitters	and demodulation: Frequency Modulation: Principles of Theory of FM— Basic Concepts, Spectrum Analysis of FM and Wideband FM, Noise triangle, Pre-emphasis, de-emphasis ect methods and Indirect method, FM Detection: Frequency hase discriminator methods. Phase Modulation: Theory of Relationship between FM and PM, Advantages and gle Modulation, Comparison of AM, FM and PM. s and Receivers: Radio receivers: Receiver Characteristics:	CO3	(05)
Unit 3 Unit 4	Angle modulation Angle Modulation, T Wave, Narrowband a FM Generation: Dire discriminator and P Phase Modulation, Disadvantages of An Radio Transmitters Sensitivity, Selectivi	and demodulation: Frequency Modulation: Principles of Theory of FM— Basic Concepts, Spectrum Analysis of FM and Wideband FM, Noise triangle, Pre-emphasis, de-emphasis ect methods and Indirect method, FM Detection: Frequency hase discriminator methods. Phase Modulation: Theory of Relationship between FM and PM, Advantages and gle Modulation, Comparison of AM, FM and PM. s and Receivers: Radio receivers: Receiver Characteristics: ty, Fidelity, Image frequency rejection ratio, TRF Receivers	CO3	(05)
Unit 3 Unit 4	Angle modulation Angle Modulation, T Wave, Narrowband a FM Generation: Dire discriminator and P Phase Modulation, Disadvantages of An Radio Transmitters Sensitivity, Selectivi and its characteristi	and demodulation: Frequency Modulation: Principles of Theory of FM— Basic Concepts, Spectrum Analysis of FM and Wideband FM, Noise triangle, Pre-emphasis, de-emphasis ect methods and Indirect method, FM Detection: Frequency hase discriminator methods. Phase Modulation: Theory of Relationship between FM and PM, Advantages and gle Modulation, Comparison of AM, FM and PM. s and Receivers: Radio receivers: Receiver Characteristics: ty, Fidelity, Image frequency rejection ratio, TRF Receivers cs, Concept of Heterodyning, Super heterodyne Receiver,	CO3	(05)
Unit 3 Unit 4	Angle modulation Angle Modulation, T Wave, Narrowband a FM Generation: Dire discriminator and P Phase Modulation, Disadvantages of An Radio Transmitters Sensitivity, Selectivi and its characteristic choice of Intermediat	and demodulation: Frequency Modulation: Principles of Theory of FM— Basic Concepts, Spectrum Analysis of FM and Wideband FM, Noise triangle, Pre-emphasis, de-emphasis ect methods and Indirect method, FM Detection: Frequency hase discriminator methods. Phase Modulation: Theory of Relationship between FM and PM, Advantages and gle Modulation, Comparison of AM, FM and PM. s and Receivers: Radio receivers: Receiver Characteristics: ty, Fidelity, Image frequency rejection ratio, TRF Receivers cs, Concept of Heterodyning, Super heterodyne Receiver, te frequency.AM and FM Transmitters and Receivers: AM and	CO3	(05)
Unit 3 Unit 4	Angle modulation Angle Modulation, T Wave, Narrowband a FM Generation: Dire discriminator and P Phase Modulation, Disadvantages of An Radio Transmitters Sensitivity, Selectivi and its characteristi choice of Intermediat FM Radio Transmitter	and demodulation: Frequency Modulation: Principles of Theory of FM— Basic Concepts, Spectrum Analysis of FM and Wideband FM, Noise triangle, Pre-emphasis, de-emphasis ect methods and Indirect method, FM Detection: Frequency hase discriminator methods. Phase Modulation: Theory of Relationship between FM and PM, Advantages and gle Modulation, Comparison of AM, FM and PM. s and Receivers: Radio receivers: Receiver Characteristics: ty, Fidelity, Image frequency rejection ratio, TRF Receivers cs, Concept of Heterodyning, Super heterodyne Receiver, te frequency.AM and FM Transmitters and Receivers: AM and ters, AM and FM Radio Receivers, Practical diode detector,	CO3	(05)
Unit 3 Unit 4	Angle modulation Angle Modulation, T Wave, Narrowband a FM Generation: Dire discriminator and P Phase Modulation, Disadvantages of An Radio Transmitters Sensitivity, Selectivi and its characteristi choice of Intermediat FM Radio Transmitt Automatic Gain Con	and demodulation: Frequency Modulation: Principles of Theory of FM— Basic Concepts, Spectrum Analysis of FM and Wideband FM, Noise triangle, Pre-emphasis, de-emphasis ect methods and Indirect method, FM Detection: Frequency hase discriminator methods. Phase Modulation: Theory of Relationship between FM and PM, Advantages and gle Modulation, Comparison of AM, FM and PM. s and Receivers: Radio receivers: Receiver Characteristics: ty, Fidelity, Image frequency rejection ratio, TRF Receivers cs, Concept of Heterodyning, Super heterodyne Receiver, te frequency.AM and FM Transmitters and Receivers: AM and ters, AM and FM Radio Receivers, Practical diode detector, ntrol (AGC), Types of AGC, Automatic Frequency Control	CO3	(05)
Unit 3 Unit 4	Angle modulation Angle Modulation, T Wave, Narrowband a FM Generation: Dire discriminator and P Phase Modulation, Disadvantages of An Radio Transmitters Sensitivity, Selectivi and its characteristi choice of Intermediat FM Radio Transmitt Automatic Gain Con (AFC) and Importance	and demodulation: Frequency Modulation: Principles of Theory of FM— Basic Concepts, Spectrum Analysis of FM and Wideband FM, Noise triangle, Pre-emphasis, de-emphasis ect methods and Indirect method, FM Detection: Frequency hase discriminator methods. Phase Modulation: Theory of Relationship between FM and PM, Advantages and gle Modulation, Comparison of AM, FM and PM. s and Receivers: Radio receivers: Receiver Characteristics: ty, Fidelity, Image frequency rejection ratio, TRF Receivers cs, Concept of Heterodyning, Super heterodyne Receiver, te frequency.AM and FM Transmitters and Receivers: AM and ters, AM and FM Radio Receivers, Practical diode detector, ntrol (AGC), Types of AGC, Automatic Frequency Control ce of Limiter	CO3	(05)
Unit 3 Unit 4 Unit 5	Angle modulation Angle Modulation, T Wave, Narrowband a FM Generation: Dire discriminator and P Phase Modulation, Disadvantages of An Radio Transmitters Sensitivity, Selectivi and its characteristi choice of Intermediat FM Radio Transmitt Automatic Gain Con (AFC) and Importance Introduction to dig	and demodulation: Frequency Modulation: Principles of Theory of FM— Basic Concepts, Spectrum Analysis of FM and Wideband FM, Noise triangle, Pre-emphasis, de-emphasis ect methods and Indirect method, FM Detection: Frequency hase discriminator methods. Phase Modulation: Theory of Relationship between FM and PM, Advantages and gle Modulation, Comparison of AM, FM and PM. s and Receivers: Radio receivers: Receiver Characteristics: ty, Fidelity, Image frequency rejection ratio, TRF Receivers cs, Concept of Heterodyning, Super heterodyne Receiver, te frequency.AM and FM Transmitters and Receivers: AM and ters, AM and FM Radio Receivers, Practical diode detector, ntrol (AGC), Types of AGC, Automatic Frequency Control ce of Limiter	CO3 CO4 C05	(05) (07) (06)
Unit 3 Unit 4 Unit 5	Angle modulation Angle Modulation, T Wave, Narrowband a FM Generation: Dire discriminator and P Phase Modulation, Disadvantages of An Radio Transmitters Sensitivity, Selectivi and its characteristi choice of Intermediat FM Radio Transmitt Automatic Gain Con (AFC) and Importance Introduction to dig Transmissions, Cons	and demodulation: Frequency Modulation: Principles of Theory of FM— Basic Concepts, Spectrum Analysis of FM and Wideband FM, Noise triangle, Pre-emphasis, de-emphasis ect methods and Indirect method, FM Detection: Frequency hase discriminator methods. Phase Modulation: Theory of Relationship between FM and PM, Advantages and gle Modulation, Comparison of AM, FM and PM. s and Receivers: Radio receivers: Receiver Characteristics: ty, Fidelity, Image frequency rejection ratio, TRF Receivers cs, Concept of Heterodyning, Super heterodyne Receiver, the frequency.AM and FM Transmitters and Receivers: AM and ters, AM and FM Radio Receivers, Practical diode detector, ntrol (AGC), Types of AGC, Automatic Frequency Control ce of Limiter ital transmission of signals: comparison of Digital Analog cept of regenerative Repeater, Sampling and quantization:	CO3 CO4 CO5	(05) (07) (06)
Unit 3 Unit 4 Unit 5	Angle modulation Angle Modulation, T Wave, Narrowband a FM Generation: Dire discriminator and P Phase Modulation, Disadvantages of An Radio Transmitters Sensitivity, Selectivi and its characteristic choice of Intermediat FM Radio Transmitt Automatic Gain Con (AFC) and Importance Introduction to dig Transmissions, Cone Sampling Theorem, Ouentigation of Signa	and demodulation: Frequency Modulation: Principles of Theory of FM— Basic Concepts, Spectrum Analysis of FM and Wideband FM, Noise triangle, Pre-emphasis, de-emphasis ect methods and Indirect method, FM Detection: Frequency hase discriminator methods. Phase Modulation: Theory of Relationship between FM and PM, Advantages and gle Modulation, Comparison of AM, FM and PM. s and Receivers: Radio receivers: Receiver Characteristics: ty, Fidelity, Image frequency rejection ratio, TRF Receivers cs, Concept of Heterodyning, Super heterodyne Receiver, te frequency.AM and FM Transmitters and Receivers: AM and ters, AM and FM Radio Receivers, Practical diode detector, ntrol (AGC), Types of AGC, Automatic Frequency Control ce of Limiter ital transmission of signals: comparison of Digital Analog cept of regenerative Repeater, Sampling and quantization: Aliasing error, Natural Sampling, Flat top sampling, ela	CO3 CO4 CO5	(05) (07) (06)
Unit 3 Unit 4 Unit 5	Angle modulation Angle Modulation, T Wave, Narrowband a FM Generation: Dire discriminator and P Phase Modulation, Disadvantages of An Radio Transmitters Sensitivity, Selectivi and its characteristic choice of Intermediat FM Radio Transmitt Automatic Gain Con (AFC) and Importance Introduction to dig Transmissions, Cone Sampling Theorem, Quantization of Signa	and demodulation: Frequency Modulation: Principles of Theory of FM— Basic Concepts, Spectrum Analysis of FM and Wideband FM, Noise triangle, Pre-emphasis, de-emphasis ect methods and Indirect method, FM Detection: Frequency hase discriminator methods. Phase Modulation: Theory of Relationship between FM and PM, Advantages and gle Modulation, Comparison of AM, FM and PM. s and Receivers: Radio receivers: Receiver Characteristics: ty, Fidelity, Image frequency rejection ratio, TRF Receivers cs, Concept of Heterodyning, Super heterodyne Receiver, the frequency.AM and FM Transmitters and Receivers: AM and ters, AM and FM Radio Receivers, Practical diode detector, ntrol (AGC), Types of AGC, Automatic Frequency Control ce of Limiter ital transmission of signals: comparison of Digital Analog cept of regenerative Repeater, Sampling and quantization: Aliasing error, Natural Sampling, Flat top sampling, als.	CO3 CO4 CO5	(05) (07) (06)
Unit 3 Unit 4 Unit 5 Unit 6	Angle modulation Angle Modulation, T Wave, Narrowband a FM Generation: Dire discriminator and P Phase Modulation, Disadvantages of An Radio Transmitters Sensitivity, Selectivi and its characteristi choice of Intermediat FM Radio Transmitt Automatic Gain Con (AFC) and Importance Introduction to dig Transmissions, Cone Sampling Theorem, Quantization of Signa	and demodulation: Frequency Modulation: Principles of Theory of FM— Basic Concepts, Spectrum Analysis of FM and Wideband FM, Noise triangle, Pre-emphasis, de-emphasis ect methods and Indirect method, FM Detection: Frequency hase discriminator methods. Phase Modulation: Theory of Relationship between FM and PM, Advantages and gle Modulation, Comparison of AM, FM and PM. s and Receivers: Radio receivers: Receiver Characteristics: ty, Fidelity, Image frequency rejection ratio, TRF Receivers cs, Concept of Heterodyning, Super heterodyne Receiver, te frequency.AM and FM Transmitters and Receivers: AM and ters, AM and FM Radio Receivers, Practical diode detector, ntrol (AGC), Types of AGC, Automatic Frequency Control ce of Limiter ital transmission of signals: comparison of Digital Analog cept of regenerative Repeater, Sampling and quantization: Aliasing error, Natural Sampling, Flat top sampling, als. tion and Multiplexing:. Pulse Modulation Techniques: setion of Pulse Amplitude Modulation (PAM). Pulse Width	CO3 CO4 CO5 C06	(05) (07) (07) (07)
Unit 3 Unit 4 Unit 5 Unit 6	Angle modulation Angle Modulation, T Wave, Narrowband a FM Generation: Dired discriminator and P Phase Modulation, Disadvantages of Ang Radio Transmitters Sensitivity, Selectivi and its characteristic choice of Intermediate FM Radio Transmitte Automatic Gain Con (AFC) and Importance Introduction to dig Transmissions, Cone Sampling Theorem, Quantization of Signa The Pulse-Modula Generation and deter Modulation (PWM)	and demodulation: Frequency Modulation: Principles of Theory of FM— Basic Concepts, Spectrum Analysis of FM and Wideband FM, Noise triangle, Pre-emphasis, de-emphasis ect methods and Indirect method, FM Detection: Frequency hase discriminator methods. Phase Modulation: Theory of Relationship between FM and PM, Advantages and gle Modulation, Comparison of AM, FM and PM. s and Receivers: Radio receivers: Receiver Characteristics: ty, Fidelity, Image frequency rejection ratio, TRF Receivers cs, Concept of Heterodyning, Super heterodyne Receiver, the frequency.AM and FM Transmitters and Receivers: AM and ters, AM and FM Radio Receivers, Practical diode detector, natori (AGC), Types of AGC, Automatic Frequency Control ce of Limiter ital transmission of signals: comparison of Digital Analog cept of regenerative Repeater, Sampling and quantization: Aliasing error, Natural Sampling, Flat top sampling, als. tion and Multiplexing:. Pulse Modulation Techniques: action of Pulse Amplitude Modulation (PAM), Pulse Width Pulse Position Modulation (PPM). PCM and Multiplexing:	CO3 CO4 CO5 C06	(05) (07) (07) (07)
Unit 3	Angle modulation Angle Modulation, 7 Wave, Narrowband a FM Generation: Dire discriminator and P Phase Modulation,	and demodulation: Frequency Modulation: Principles of Theory of FM— Basic Concepts, Spectrum Analysis of FM and Wideband FM, Noise triangle, Pre-emphasis, de-emphasis ect methods and Indirect method, FM Detection: Frequency hase discriminator methods. Phase Modulation: Theory of Relationship between FM and PM, Advantages and als Madulation: Comparison of AM, FM	CO3	(05)

	Multiplexing (FDM) T										
Tex	Text Books										
1.	1. Kennedy and Davis, "Electronics Communication System", Tata McGrawHill, 5th Edition, 2023										
2.	Simon Haykins& Moher, Communication Systems, John Wiley, India Pvt. Ltd, 5 th Edition, 2010										
3.	John. G. Proakis, Masoud Salehi, "Fundamentals of Communication Systems", Pearson Education, 6th edition										
	2011.										
Ref	Reference Books										
1.	. B P Lathi and Zhi Ding, Modern Digital and Analog Communication Systems, Oxford University Press.,										
	edition, 2010,										
2.	Simon Haykins, An Introduction to Analog and Digital Communication, John Wiley India Pvt. Ltd., 2008										
3.	3. H Taub & D L Schilling, Principles of Communication Systems, TMH, 3 rd edition 2011.										
Use	Useful Links										
1.	1. https://youtu.be/iZM2zgxnEOc/Prof. Goutam Das/ DIGITAL COMUNICATION/IIT, Kharagpur										

PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO3
\rightarrow	1	2	3	4	5	6	6	8	9	10	11	12	1	2	
CO↓															
CO 1	2	2	1	-	2	-	-	-	-	-	1	-	1	3	-
CO 2	2	3	2	1	1	1	-	-	-	-	-	1	1	3	1
CO 3	3	2	2	2	-	1	-	-	-	-	1	1	1	3	1
CO 4	3	2	2	2	-	-	-	-	-	-	-	1		3	
CO5	2	3	2	1	1	1	-	-	-	-	-	1	1	3	1
CO6	2	2	1	-	2	-	-	-	-	-	1	-	1	3	

1: Slight(Low)

2: Moderate(Medium)

3: Substantial(High)

Knowledge Level	FA	SA
Remember	3	
Understand	5	10
Apply	6	10
Analyse	6	5
Evaluate		5
Create	-	-
TOTAL	20	30

Government College of Engineering, Karad											
Programme: Double Minors (Multidisciplinary and Specialization Minors)											
EXDO 0402: Analog Communication Lab											
Laborator	Scheme:										
Practical		02 Hrs/week									
Total Cred	its	01									
Prerequisi	ite :Co	mputer fundamentals									
Course Ou	utcome	s (CO): Students wil	l be able to								
CO1	Mode	l an analog communi	cation system signal transmiss	sion and recept	ion.						
CO2	Realiz	the electronic circu	its to perform analog and puls	se modulations	and demod	dulations.					
CO3	Verif	y the sampling theore	em and relate the signal and its	s spectrum befo	ore and afte	er sampling.					
CO4	Under	rstand the process of	PCM and delta modulations.								
		C	ourse Contents			СО					
Implemen	tation	of following concep	ts		·						
Experiment 1		Amplitude Modulation and Demodulation of									
		(a) Standard AM and (b) DSBSC.									
Experiment 2		Spectrum Analysis Of Modulated Signal Using Spectrum Analyzer									
Experime	nt 3	Frequency modulation and demodulation									
Experiment 4		Design and test Time Division Multiplexing and Demultiplexing of two band limited signals.									
Experime	nt 5	To perform and analyze different blocks in AM super heterodyne receiver									
Experime	nt 6	To perform and ana	CO2								
Experime	nt 7	Design and test									
_		i) Pulse sampsling, flat top sampling and reconstruction.									
		ii)Pulse amplitude modulation and demodulation.									
Experiment 8		Pulse Width Modu	CO3								
Experime	nt 9	Pulse Code Modula	CO4								
Experiment 10		Delta Modulation a	CO4								
List of Sul	List of Submission:										
		Minimum number of	of Experiments : 10								

$PO \rightarrow$	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO 10	PO	PO	PSO	PSO	PSO3
CO↓	1	2	3	4	5	6	7	8	9		11	12	1	2	
CO 1	2	2	2	2	-	2	-	-	-	-	-	-	1	3	1
CO 2	2	3	2	2	2	2		-	-	-	-	-	1	3	1
CO 3	2	2	3	2	2		-	-	-	-	-	-	1	3	1
CO 4	2	3	2	2	2	2		-	-	-	-	-	1	3	1
CO 5	2	2	2	2	-	2							1	3	1
1: Slight(Low)					2: Moderate (Medium)						3: Substantial (High)				