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Abstract It Management of ground water resources including both quantity and quality requires the ability 

to establish a regional groundwater balance, to calculate flow of ground water, to predict water regimes in 

aquifers in response to proposed management schemes, to predict changes in water quality, to predict the 

transport of response of an aquifer system, both in terms of quantity which is observed as water levels and 

quality, is provided by flow and solute transport models that describe the response of the considered 

groundwater system to excitations.  

When the contaminant is subject to non-linear degradation or decay, or it is characterized by a chemical 

constituent that follows a non-linear sorption isotherm, the resulting differential equation is non-linear. 

Analytical solution of non-linear differential equation is difficult. In the present work analytical model is the 

practical scenario of an instantaneous spill is studied for situations of non-linear decay, non-linear 

Freundlich isotherm, and non-linear Langmuir isotherm.  

The FDM predictions were found to be in excellent agreement with analytical solutions for a wide range of 

field conditions with regard to dispersion and source definition. The new developed numerical model can be 

used for the forecasting of contaminant dispersion in laboratory and field under non-linear reactions, or for 

the quantitative description of the effect of non-linearity in the sorption parameters, on the time-space 

distribution of the contaminant. The implicit method used here which is unconditionally stable. 
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INTRODUCTION 

Contamination of water either on surface or in ground is crucial problem. In most of 

groundwater contaminant transport investigations it is not practical to monitor all aspects of the 

groundwater flow and solute distributions. Groundwater models, which replicate the processes of 

interest at the site, can be used t complement monitoring and laboratory bench-scale studies in 

evaluating and forecasting groundwater flow and transport. However, every reliable model is 

based on accurate field data.  

The oscillation in FDMs is usually avoided by adapting upwind methods. The upwind 

methods are reported to introduce large artificial dispersion. An improved FDM has been 

developed by Hossain and Yonge (1999) to provide oscillation free results with the introduction of 

minimum artificial dispersion. The improvement has been achieved by developing an expression 

of the minimum artificial dispersion needed to provide accurate results. The improved FDM 

provides results in excellent agreement with the analytical solution. A one-dimensional theory of 

contaminant migration through a saturated deforming porous media is developed by D.W. Smith 

(2000) based on a small and large strain analysis of a consolidating soil and conservation of 

contaminant mass. By selection of suitable parameters, the new transport equation reduces to the 

familiar one-dimensional dispersion-advection equation for a saturated soil with linear, reversible, 

equilibrium controlled sorption of the contaminant onto the soil skeleton. Analytic solutions for a 

quasi-steady-state problem have been presented. The solutions presented here provide a useful 

benchmark for solutions found using numerical methods, and clearly an investigation of the new 

transport equation under transient and finite mass boundary conditions should be undertaken using 

finite element analysis. A hybrid method of differential transform and finite difference method is 

employed by Chen and Ju (2004) to predict the advective–dispersive transport problems. The 

parameters of the equation are varied and different kinds of input sources are engaged to verify 

that the differential transform method is suitable for the problem. Some simulation results are 

illustrated and discussed in compare with the analytic solutions. The results show that the 



Amarsinh B. Landage 

 
2 

differential transform method can achieve good results in predicting the solution of such problems. 

A solute transport model developed by Eckhard Worch (2004) that describes non equilibrium 

adsorption in soil/groundwater systems by mass transfer equations for film and intra particle 

diffusion. The Freundlich isotherm is used in the model to make it applicable to systems with 

linear and nonlinear adsorption isotherms. This dispersed flow/film and particle diffusion model 

(DF-FPDM) was applied to three experimental data sets from column experiments with sandy 

aquifer material as sorbent and different solutes. The validity was also proved by a comparison 

with an analytical solution for the limiting case of predominating dispersion. Furthermore, a 

sensitivity analysis was performed to illustrate the influence of different process and sorption 

parameters (pore water velocity, intra particle mass transfer coefficient, and isotherm nonlinearity) 

on the shape of the calculated breakthrough curves. The DF-FPDM is assumed to be applicable 

also to competitive adsorption.  

The multiple domain algorithms solves the one dimensional transient advection dispersion 

equation and similar partial differential equation numerically using an explicit scheme over a 

series of spatial domains at a constant time step, facilitating a faster propagation of transport 

information. This facilitates spreading the effect of the boundary condition across a wider interior 

domain with reduced computational effort. This study has accomplished integrating this approach 

for the explicit family of schemes, which are otherwise limited by the CFL condition. Rao and 

Medina Jr (2005) has been used the second order accurate MacCormack predictor–corrector 

method as the base numerical scheme in this investigation. However, this method is subject to 

another numerical difficulty: excessive diffusion of the wave front near the location of the moving 

front, thus possibly limiting its application for a select class of problems. In this numerical model 

proposed combine effect of decay and sorption on account for the solution of governing equation 

of contaminant transport. 

 

CONTAMINANT TRANSPORT MECHANIS 

Advection 

Advection is the mass transport caused by the bulk movement of flowing ground water. The 

deriving force is the hydraulic gradient. The average transport velocity is calculated as the Darcy 

flux is divide by the effective porosity. 

 

Dispersion 

Dispersive spreading, within and transverse to, the main flow direction causes a gradual dilution of 

the contamination plume. Dispersion is an undesirable because it spreads contaminants very fast 

which in turn increases the volume of the contaminated ground water. 

 

Diffusion 

Diffusion is the net flux of the solutes from a zone of higher concentration to a zone of lower 

concentration. Diffusion does not depend on any bulk movement of the solution. The driving force 

is the random movement of the ionic and molecular constituents under the influence of their 

kinetic activity called Brownian motion 

 

Decay 

Not all contaminants that are adsorbed or desorbed follow the principle of fast reactions. Reactions 

that are relatively slow in comparison to the average travel time of the contaminants are described 

by kinetics. Reactions of the first order are applied to describe radioactive decay and/or simple 

degradation processes. 

 

Sorption 

Sorption refers to adsorption and desorption. Adsorption describes the adhesion of molecules or 
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ions to the grain surface in the aquifer. The release from the solid phase is called desorption. 

Adsorption causes diminution of concentrations in the aqueous phase and a retardation of 

contaminant transport compared to water movement. 

 

GOVERNING EQUATION FOR CONTAMINANT TRANSPORT 

 

It is assumed that soil is homogeneous and isotropic. The porosity of soil, saturated hydraulic 

conductivity, ground water pore velocity is constant. One-dimensional ground water flow is 

considered. Hydrodynamic dispersion coefficient, Freundlich and Langmuir parameters and 

retardation is constant.  

The one-dimensional advective-dispersive equations in an infinite aquifer subject constant point 

source and linear biological or radioactive decay. 
2

2
0
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 ----------------------- ,0x t     and  , 0C t   

 

The one-dimensional advective-dispersive equations in an infinite aquifer subject to a general non-

linear sorption isotherm of the form  
2
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Where, Rd is retardation factor 

 

(a) Freundlich retardation factor by Freundlich sorption Isotherm 
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(b) Langmuir retardation factor by Langmuir sorption Isotherm 
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The one-dimensional advective-dispersive equations in an infinite aquifer subject to constant point 

source and non-linear biological or radioactive decay and sorption 
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NUMERICAL SOLUTION FOR DECAYING CONTAMINANT SPECIES TRANSPORT 

 

The one-dimensional advective-dispersive equations in a semi infinite aquifer subject to constant 

point source and linear biological or radioactive decay. 
2
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The above equation may be solved for a variety of boundary and initial conditions. However, the 

following boundary and initial conditions were considered. 

B.C. 

  00, 0C x t C    and   , 0 0C x L t    

I.C. 

 0 , 0 0C x L t     

So the 1-D advection-dispersion equation becomes, in FDM form: 
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The matrix 
FM    is tridiagonal and is constant. At each time step, systems of equations are 

solved for concentrations at the nodes by forward and backward substitutions using Gauss 

Elimination Technique. 

 

NUMERICAL SOLUTION FOR SORBING CONTAMINANT SPECIES TRANSPORT 

MODEL 

The one-dimensional advective-dispersive equations in a semi infinite aquifer subject to a general 

non-linear sorption isotherm of the form  
2
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The above equation may be solved for a variety of boundary and initial conditions. However, the 
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following boundary and initial conditions were considered. 

B.C. 

  00, 0C x t C    and   , 0 0C x L t    

I.C. 

 0 , 0 0C x L t     
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1

1 1 1 1

2

2

2

j j j j j j j

i i i i i i i
d

C C C C C C C
R D u

t x x



   
        

      
       

 

 

In matrix  

 

1

2

3

2

1

1 0 0 0 0 0 . . . . 0 0 0 0 0

0 0 0 . . . . 0 0 0 0 0

0 0 0 . . . . 0 0 0 0 0

. . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . .

0 0 0 0 0 0 . . . 0 0 0

0 0 0 0 0 0 . . . 0 0 0

0 0 0 0 0 0 . . . 0 0 0 0 0 1

j

j

j

j

n

j

n

j

n

C

P Q R C

P Q R C

P Q R C

P Q R C

C





 
 
 
 
 
 
 
 
 
 
 

 
 
  

0

1

2

1

3

1

2

1

1

1

.

.

.

j

j

j

n

j

n

j

n

C

C

C

C

C

C















  
  
  
  
  
  
  
  
  
  
  

   
   

  

 

F j FM C R            

 

NUMERICAL SOLUTION FOR DECAYING AND SORBING CONTAMINANT SPECIES 

TRANSPORT MODEL 

The one-dimensional advective-dispersive equations in a semi infinite aquifer subject to constant 

point source and non-linear biological or radioactive decay and sorption 
2
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In matrix form: 
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RESULT AND DISCUSSION 

Contaminant concentration distribution species for decaying and sorbing species at different 

time 

 
Concentration Distribution at 1 month 
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Concentration Distribution at 240 month 

 

 

 

Figures show concentration distribution of contaminant species at different time in longitudinal 

direction.  

It is observed that at initial time contaminant species rapidly reduces in domain due to sorption and 

decay. Contaminant specie dose not travel more distance As time increases plot clearly difference 

between decay, Freundlich sorption and Langmuir sorption. Contaminant species diminish due to 

decay. In case of Freundlich sorption and Langmuir sorption solute particle travel long distance in 

the direction of ground water velocity and slowly reduces its movement and existance. Because of 

high value of Freundlich retardation factor contaminant species velocity less than velocity of 

species due to Langmuir sorption. 

At the initial few months it is observed that front of concentration distribution curve is smooth and 

concentration slow decrease. However, as time increases front become sharp. It indicates that after 

traveling certain distance in long time concentration reduces rapidly.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Amarsinh B. Landage 

 
8 

Contaminant concentration distribution species for decaying and sorbing species at different 

distance 

 
 

Concentration Distribution at 50 meter 

 

 

 

 

 

 
Concentration Distribution at 100 meter 

 

Figures show concentration distribution of contaminant species at different distance for continuous 

time 

It is observed that plume of contaminant species reaches early period in case of Langmuir sorption, 

shows that contaminant species velocity in the longitudinal direction of ground water is high. In 

case of Freundlich sorption, plume takes more time to reach at particular distance than Langmuir 
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sorption. It indicates that contaminant species velocity more affected due Freundlich sorption than 

Langmuir sorption. 

Contaminant species almost diminishes due to decay. When we take combine effect of decay and 

sorption, decay is always dominant than sorption. Because of that species concentration reduces 

rapidly in aquifer.  

 

CONCLUSION 

 

The FDM predictions were found to be in excellent agreement with analytical solutions for 

a wide range of field conditions with regard to dispersion and source definition. The new 

developed numerical model can be used for the forecasting of contaminant dispersion under non-

linear reactions, or for the quantitative description of the effect of non-linearity in the sorption 

parameters, on the time-space distribution of the contaminant. The solution for numerical values of 

state variable only at specified points in the space and time domains defined for the problem. The 

above FDM model solved by using implicit scheme is unconditionally stable. The proposed 

models are flexible, stable, and could be used for laboratory or field simulations at early or 

prolonged contamination scenarios. 
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